Skip to main content

Metal complex in polymer membrane as a model for photosynthetic oxygen evolving center

  • Chapter
  • First Online:
Synthesis and Photosynthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 123))

Abstract

Photosynthesis is attracting attention as an important model of artificial photochemical conversion system in relevant to solar energy conversion for new energy resources. In the photosynthesis, dioxygen evolution is the most important process which provides electrons to the whole photochemical system. Several proposals have been put forward to elucidate the mechanism in the dioxygen formation from two water molecules and four molecules of one-electron oxidation catalyst. The protein part of the oxygen evolving center plays an important role for the catalysis. However, these mechanisms remain the most obscure part of plant photosynthesis. In order to construct artificial photosynthesis for the future energy source, it is important to utilize heterogeneous system such as polymer aggregates. The present authors have established new and active water oxidation catalysts as models for the photosynthesis especially by using heterogeneous polymer systems.

This review article mainly summarizes the work done on artificial water oxidation processes using polymer membranes, and the mechanism of the dioxygen evolution will be discussed. In the model water oxidation systems studied, the multielectron transfer catalytic metal complexes such as Mn and Ru are oxidized by chemical, electrochemical and photochemical methods to produce reactive higher oxidation states which oxidize two water molecules to liberate dioxygen both in homogeneous and heterogeneous polymer membrane systems. Structural reorganization of the catalytic molecules in the polymer membrane during dioxygen evolution is also described. Visible light splitting of water has been achieved by a system composed of a semiconductor photoanode modified with a polymer membrane incorporating water oxidation catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Renger G, Photosynthetic Water Oxidation, Academic Press, London (1978)

    Google Scholar 

  2. Inoue T, Crofts CR, Govindjee, Murata N (eds) The Oxygen Evolving System of Photosynthesis, Academic Press, London (1983)

    Google Scholar 

  3. Biggins J (ed) Progress in Photosynthesis Research, Vol. 3, Martinus Nijhoff, Dordrecht (1987)

    Google Scholar 

  4. Graetzel M (ed) Energy Resources Through Photochemistry and Catalysis, Academic Press, London (1983)

    Google Scholar 

  5. Kaneko M, Woehrle D (1988) Adv Polym Sci 84: 141

    Article  CAS  Google Scholar 

  6. Tsuchida E (ed) Macromolecular Complexes: Dynamic Interactions and Electronic Processes, VCH Publishers, New York (1991)

    Google Scholar 

  7. Govindjee (ed) Bioenergetics of Photosynthesis, Academic Press, London (1975)

    Google Scholar 

  8. Govindjee (ed) Photosynthesis-Energy Conversion by Plants and Bacteria, Vol. 1, Academic Press, London (1982)

    Google Scholar 

  9. Barber J (ed) Primary Processes of Photosynthesis, Elsevier/North Holland Biomedical Press, Amsterdam (1977)

    Google Scholar 

  10. Weighardt K (1989) Angw Chem Int Ed Engl 28: 1153

    Article  Google Scholar 

  11. Pelizzetti E, Schiavello M (eds) Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  12. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Nature 318: 618

    Article  Google Scholar 

  13. Kalyanasundaram K, Graetzel M (1979) Angew Chem Int Ed Engl 18: 701

    Article  Google Scholar 

  14. Lehn JM, Sauvage JP, Ziessel R (1979) Nouv J Chim 3: 423

    CAS  Google Scholar 

  15. Rillema DP, Dressick WJ, Meyer TJ (1980) J Chem Soc Chem Commun 247

    Google Scholar 

  16. Shafirovich V Ya, Khannanov NK, Strelets VV (1980) Nouv J Chim 4: 81

    CAS  Google Scholar 

  17. Kiwi J, Graetzel M (1978) Angrew Chem Int Ed Engl 17: 860

    Article  Google Scholar 

  18. Harriman A, Mills A (1981) J Chem Soc Faraday Trans 1. 77: 2111

    Article  CAS  Google Scholar 

  19. Kaneko M, Awaya N, Yamada A (1982) Chem Lett 619

    Google Scholar 

  20. Graetzel M (1980) Ber Bunsenges Phs Chem 84: 9181

    Google Scholar 

  21. Harriman A, Porter G, Walters P (1981) J Chem Soc Faraday Trans 2. 77: 2373

    Article  CAS  Google Scholar 

  22. Creutz C, Suitn N (1975) Proc Natl Acad Sci USA. 72: 2858

    Article  CAS  Google Scholar 

  23. Kaneko M, Takabayashi N, Yamada A (1982) Chem Lett 1647

    Google Scholar 

  24. Luneva NP, Shafirovich VYa, Shilov AE (1989) J Mol Catal 52: 49

    Article  CAS  Google Scholar 

  25. Elizarova GL, Matvienko LG, Parmon VN (1987) J Mol Catal 43: 171

    Article  CAS  Google Scholar 

  26. Calvin M (1874) Science 184: 375

    Article  Google Scholar 

  27. Porter G (1978) Proc Royal Soc London. A362: 28

    Google Scholar 

  28. Cooper SR, Calvin M (1974) Science 185: 376

    Article  CAS  Google Scholar 

  29. Ramaraj R, Kira A, Kaneko M (1986) Angrew Chem Int Ed Engl 25: 825

    Article  Google Scholar 

  30. Ramaraj R, Kira A. Kaneko M (1987) Chem Lett 261

    Google Scholar 

  31. Lawrence LG, Sawyer DT (1978) Coord Chem Rev 27: 173

    Article  CAS  Google Scholar 

  32. Sauer K (1980) Acc Chem Res 13: 249

    Article  CAS  Google Scholar 

  33. Govindjee, Kambara T, Coleman W (1985) Photochem Photobiol 42: 187

    Article  CAS  Google Scholar 

  34. Ashmawy FM, McAuliffe CA, Parish RV, Tames J (1985) J Chem Soc Dalton Trans 1391

    Google Scholar 

  35. McAuliffe CA, Parish RV, Abu-El-Wafa SM, Issa RM (1986) Inorg Chim Acta 115: 91

    Article  CAS  Google Scholar 

  36. Ashmawy FM, McAuliffe CA, Parish RV, Tames J (1984) J Chem Soc Chem Commun 14

    Google Scholar 

  37. Matsushita T, Spencer L, Sawyer DT (1988) Inorg Chem 27: 1167

    Article  CAS  Google Scholar 

  38. Gobi KV, Ramaraj R, Kaneko M (1983) J Mol Catal 81: L7

    Google Scholar 

  39. Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104: 4029

    Article  CAS  Google Scholar 

  40. Meyer TJ (1984) J ELectrochem Soc 131: 221C

    Google Scholar 

  41. Gilbert JA, Eggeleston DS, Murphy Jr WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107: 3855

    Article  CAS  Google Scholar 

  42. Collin JP, Sauvage JP (1986) Inorg Chem 25: 135

    Article  CAS  Google Scholar 

  43. Ramaraj R, Kira A, Kaneko M (1986) J Chem Soc Faraday Trans 1. 82: 3515

    Article  CAS  Google Scholar 

  44. Honda K, Frank AJ (1984) J Chem Soc Chem Commun 1635

    Google Scholar 

  45. Lay PA, Sasse WHF (1985) Inorg Chem 24: 4707

    Article  CAS  Google Scholar 

  46. Ramaraj R, Kira A, Kaneko M (1987) J Chem Faraday Trans 1. 83: 1539

    Article  CAS  Google Scholar 

  47. Ramaraj R, Kira A, Kaneko M (1986) Angew Chem Intl Ed Engl 25: 1009

    Article  Google Scholar 

  48. Rotzinger FP, Munavelli S, Comte P, Hurst JK, Graetzel M, Pern FJ, Frank AJ (1987) J Am Chem Soc 109: 6619

    Article  CAS  Google Scholar 

  49. Nazeerudin MK, Rotzinger FP, Comte P, Graetzel M (1988) J Chem Soc Chem Commun 872

    Google Scholar 

  50. Comte P, Nazeerudin MK, Rotzinger FP, Frank AJ, Graetzel M (1989) J Mol Catal 52: 63

    Article  CAS  Google Scholar 

  51. Kaneko M, Ramaraj R, Kira A (1988) Bull Chem Soc Jpn 61: 417

    Article  CAS  Google Scholar 

  52. Goswami S, Chakravarthy AR, Chakravorty A (1982) J Chem Soc Chem Commun 1288

    Google Scholar 

  53. Nijs H, Crutz MI, Fripiat J, Van Damme H (1981) J Chem Soc Chem Commun 1026

    Google Scholar 

  54. Takuchi KJ, Samuels GJ, Gerstein SW, Gilbert JA, Meyer TJ (1983) Inorg Chem 22: 1409

    Article  Google Scholar 

  55. Mills A, Russell T (1991) J Chem Soc Faraday Trans 87: 313

    Article  CAS  Google Scholar 

  56. Hurst JK, Zhou J, Lei Y (1992) Inorg Chem 31: 1010

    Article  CAS  Google Scholar 

  57. Eisenberg A, Yeager HL (1982) (eds) Perfluorinated Ionomer Membrane, Vol. 180, American Chemical Society, Washington DC

    Google Scholar 

  58. Yeager HL, Steck A (1981) J Electrochem Soc 128: 1880

    Article  CAS  Google Scholar 

  59. Nijs H, Crutz MI, Fripiat JJ, Van Damme H (1982) Nouv J Chim 6: 551

    CAS  Google Scholar 

  60. Abdo S, Canesson P, Crutz MI, Fripiat JJ, Van Damme H (1981) J Phys Chem 85: 797

    Article  CAS  Google Scholar 

  61. Dobson JC, Meyer TJ (1988) Inorg Chem 27: 3283

    Article  CAS  Google Scholar 

  62. Ramaraj R, Kira A, Kaneko M (1993) J. Electronal Chem 348: 367

    Article  CAS  Google Scholar 

  63. Ramaraj R, Kira A, Kaneko M (submitted to Polymers for Advanced Technologies)

    Google Scholar 

  64. Vining WJ, Meyer TJ (1986) Inorg Chem 25: 2023

    Article  CAS  Google Scholar 

  65. Fletcher JM, Greenfield BF, Hardy CJ, Scargill D, Woohead JL (1961) J. Chem Soc A. 2000

    Google Scholar 

  66. Early JE, Fealey T (1973) Inorg Chem 12: 323

    Article  Google Scholar 

  67. Earley JE, Fealey T (1971) Chem Commun 331

    Google Scholar 

  68. Early JE, Razari H (1973) Inorg Nucl Chem Lett 9: 331

    Article  Google Scholar 

  69. Early JE (1973) Inorg Nucl Chem Lett 9: 487

    Article  Google Scholar 

  70. Yao G.-J, Kira A, Kaneko M (1988) J Chem Soc Faraday Trans.. 84: 4451

    Article  CAS  Google Scholar 

  71. Ramaraj R, Kaneko M (1993) J Chem Soc Chem Commun 579

    Google Scholar 

  72. Ramaraj R, Kaneko M (1993) J Mol Catal 81: 319

    Article  CAS  Google Scholar 

  73. Schiavello M (ed) Photoelectrochemistry, Photocatalysis and Photoreactors, Reidel, Dordrecht (1985)

    Google Scholar 

  74. Fujishima A, Honda K (1972) Nature 238: 37

    Article  CAS  Google Scholar 

  75. Kayanasudnaram K, Graetzel M (1979) Angew Chem Int Ed Engl 18: 701

    Article  Google Scholar 

  76. Frank AJ, Honda K (1982) J Phys Chem 86: 1933

    Article  CAS  Google Scholar 

  77. Kaneko M, Okada K, Teratani S, Taya K (1987) Electrochim Acta 32: 1405

    Article  CAS  Google Scholar 

  78. Kaneko M, Yao G.-J, Kira A (1989) J Chem Soc Chem Commun 1338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Ramaraj, R., Kaneko, M. (1995). Metal complex in polymer membrane as a model for photosynthetic oxygen evolving center. In: Synthesis and Photosynthesis. Advances in Polymer Science, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58908-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-58908-2_5

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58908-2

  • Online ISBN: 978-3-540-49137-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics