Skip to main content

Drag, Lift and Virtual Mass Forces

  • Chapter
Multiphase Flow Dynamics 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach E (1993) Heat and flow characteristics of packed beds, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Kelleher M D et al. (eds) Elsevier

    Google Scholar 

  • Alekseenko SW, Nakoryakov VE and Pokusaev BG (1996) Wave flow of liquid films, Begel Hose, New York, ed. Fukano

    Google Scholar 

  • Ambrosini W, Andreussi P and Azzopardi BJ (1991) Int. J. Multiphase Flow, vol 17 no 4 pp 497-507

    Article  MATH  Google Scholar 

  • Andreussi P, Asali JC and Hanratty TJ (1985) Initiation of roll waves in gas-liquid flows, AIChE Journal vol 31, pp 119-126

    Article  Google Scholar 

  • Antal S, Kurul N, Podowski MZ and Lahey Jr RT (June 8-12, 1998) The development of multidimensional modeling capabilities for annular flows, Third Int. Conf. on Multiphase Flow, ICMF’98, Lion, France

    Google Scholar 

  • Aritomi M, Inoue A, Aoki S and Hanawa K (1990) Thermo- hydraulic behavior of inverted annular flow, NED vol 120 pp 281-291

    Article  Google Scholar 

  • Asali JC, Hanratty TJ and Andreussi P (1985) Interfacial drag and film height for vertical annular flow, AIChE Journal vol 31 pp 895-902

    Article  Google Scholar 

  • Auton RT (1987) The lift force on a spherical body in rotating flow, J. Fluid Mechanics, vol 183 pp 199-218

    Article  MATH  Google Scholar 

  • Bharathan D, Richter HT and Wallis GB (1978) Air-water counter-current annular flow in vertical tubes, EPRI-NP-786

    Google Scholar 

  • Bharathan D, Wallis GB, Richter HT (1979) Air - water countercurrent annular flow. EPRI NP - 1165, Electric Power Research Inst., Palo Alto, California

    Google Scholar 

  • Biberg D (December 1999) An explicit approximation for the wetted angle in two-phase stratified pipe flow, The Canadian Journal of Chemical Engineering, vol 77 pp 1221-1224

    Article  Google Scholar 

  • Biesheuvel A and Spoelstra S (1989) The added mass coefficient of a dispersion of spherical gas bubbles in liquid, Int. J. Multiphase Flow, vol 15 pp 911-924

    Article  MATH  Google Scholar 

  • Bournaski E (1992) Numerical simulation of unsteady multiphase pipeline flow with virtual mass effect, Int. J. for Numerical Methods in Engineering, vol 34 pp 727-740

    Article  MATH  Google Scholar 

  • Brinkman HC (1951) J. Chem. Phys., vol 6 p 571

    Google Scholar 

  • Brinkman HC (1952) J. Chem. Phys., vol 20 p 571

    Article  Google Scholar 

  • Brooks RH and Corey AT (1966) Properties of porous media affecting fluid flow, J. Irrig. and Drainage Div. Proc. ASChE, vol 92, IR2 pp 61

    Google Scholar 

  • Brown GG et al. (1950) Unit operations, J. Wiley and Sons, Inc., New York, pp 210-228

    Google Scholar 

  • Dobran F (1983) Hydrodynamics of heat transfer analysis of two-phase annular flow with a new liquid film model of turbulence, Int. J. of Heat and Mass Transfer, vol 26 pp 1159-1171

    Article  MATH  Google Scholar 

  • Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining flow, Int. J. Multiphase Flow, vol. 13 no 1, pp 113-121

    Article  MATH  Google Scholar 

  • Ergun S (1952) Fluid flow through packed columns, Chem. Eng. Prog., vol 48 no 2 pp 89-94

    Google Scholar 

  • Fore LB, Beus SG and Bauer RC (2000) Interfacial friction in gas-liquid annular flow: analogies to full and transition roughness, International Journal of Multiphase Flow, vol 26 pp 1755-1769

    Article  MATH  Google Scholar 

  • Geary NW and Rice RG (Oct. 1991) Circulation in bubble columns: correlations for distorted bubble shape, AIChE Journal, vol 37 no 10 pp 1593-1594

    Article  Google Scholar 

  • Govan AH, Hewitt GF, Richter HJ, and Scott A (1991) Flooding and churn flow in vertical pipes, Int. J. Multiphase Flow, vol 17 no 1 pp 27-44

    Article  MATH  Google Scholar 

  • Hadamard JS (1911) Mouvement permanent lent d’ une sphere liquide et visqueuse dans un liquide visqueux, Compte-Rendus de’ l’ Acad. Des Sci., Paris, vol 152 pp 1735-1738

    Google Scholar 

  • Hanratty TJ and Dykho LA (1997) Physical issues in analyzing gas-liquid annular flows, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Eds.: Giot M, Mayinger F and Celata GP, pp 1127-1136

    Google Scholar 

  • Henstock WH and Hanratty TJ (1976) The interfacial drag and the height of the wall layer in annular flows,” AIChE Journal, vol 22 pp 990-1000

    Article  Google Scholar 

  • Houze N and Dukler AE (21-23 June 1965) The effect of a moving interface on gas phase turbulence, Proc. Of the Symposium on Two Phase Flow, Department of chemical engineering University of Exeter, Devon, England

    Google Scholar 

  • Hugmark GA (Sept. 1973) Film thickness, entrainment and pressure drop in upward annular and dispersed flow, AIChEJ, vol 19 no 5 pp 1062-1065

    Article  Google Scholar 

  • Hurlburt ET, Fore LB and Bauer RC (July 17-20, 2006) A two zone interfacial shear stress and liquid film velocity model for vertical annular two-phase flow, Proceedings of FEDSM2006 2006 ASME Joint U.S. - European Fluids Engineering Summer Meeting July 17-20, Miami, FL, FEDSM2006-98512

    Google Scholar 

  • Idelchik IE (1975) Handbook of hydraulic resistance, Second Edition, Hemisphere, Washington, translated from Russian in 1986

    Google Scholar 

  • Ishii M and Chawla TC (Dec.1979) Local drag laws in dispersed two-phase flow, NUREG/CR-1230, ANL-79-105

    Google Scholar 

  • Ishii M and Zuber N (1978) Relative motion and interfacial drag coefficient in dispersed two - phase flow of bubbles, drops and particles, Paper 56 a, AIChE 71st Ann. Meet., Miami

    Google Scholar 

  • Jeffrey D (1973) Condition to a random suspension of spheres, Proc. R. Soc. London, A335 pp 355-367

    Google Scholar 

  • Kendoush AA (July 17-20, 2006) Modification of the classical theory of the virtual mass of an accelerated spherical particle, Proc. of the FEDSM2006, 2006 ASME Joint US-European Fluids Engineering Summer Meeting, Miami, Fl

    Google Scholar 

  • Klausner JF, Mei R, Bernhard D and Zeng LZ (1993) Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Transfer, vol 36 pp 651-662

    Article  Google Scholar 

  • Kolev NI (1977) Two-phase two-component flow (air-water steam-water) among the safety compartments of the nuclear power plants with water cooled nuclear reactors during lose of coolant accidents, PhD Thesis, Technical University Dresden

    Google Scholar 

  • Krepper E and Egorov Y (May 16-20, 2005) CFD-Modeling of subcooled boiling and application to simulate a hot channel of fuel assembly, 13th Int. Conference on Nuclear Engineering, Beijing, China References 91

    Google Scholar 

  • Krepper E, Lucas D and Prasser H-M (2005) On the modeling of bubbly flow in vertical pipes, Nuclear Engineering and Design, vol 235 pp 597-611

    Article  Google Scholar 

  • Lahey R Jr and Drew DA (2001) The analysis of two-phase flow and heat transfer using a multi-dimensional four field, two fluid model, Nuclear Engineering and Design, vol 204 pp 29-44

    Article  Google Scholar 

  • Lamb H (1945) Hydrodynamics, Dover, New York

    Google Scholar 

  • Lamb MA (1945) Hydrodynamics, Cambridge University Press, Cambridge

    Google Scholar 

  • Lance M and Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly airwater flow, J. of Fluid Mechanics, vol 22 pp 95-118

    Article  Google Scholar 

  • Lee SC and Bankoff SG (1983) Stability of steam - water countercurrent flow in an inclined channel. J. Heat Transfer, vol 105 pp 713-718

    Article  Google Scholar 

  • Lepinski RJ (Apr. 1984) A coolability model for postaccident nuclear reactor debries, Nucl. Technology, vol 65 pp 53-66

    Google Scholar 

  • Lopes JCB and Dukler AE (Sept.1986) Droplet entrainment in vertical annular flow and its contribution to momentum Transfer, AIChE Journal, vol 32 no 9 pp 1500-1515

    Article  Google Scholar 

  • Lopez de Bertodano MA, Shi JF and Beus SG (1997) Air-water experiments for annular flow pressure drop in small pipe, Nuclear Science and Engineering, vol 126 pp 108-114

    Google Scholar 

  • Mei R (1992) An approximate expression for the shear lift force on spherical particle at finite Reynolds number, Int. J. Multiphase Flow, vol 18 no 1 pp 145-147

    Article  MATH  Google Scholar 

  • Mei R and Klausner JF (1995) Shear lift force on spherical bubbles, Int. J. Heat Fluid-Flow, vol 15 pp 62-65

    Article  Google Scholar 

  • Michaelides EE (March 2003) Hydrodynamic force and heat/mass transfer from particles, bubbles and drops – The Freeman Scholar Lecture, ASME Journal of Fluids Engineering, vol 125 pp 209-238

    Article  Google Scholar 

  • Militzer J, Kann J M, Hamdullahpur F, Amyotte P R, Al Towel A M (1998) Drag coefficients of axisymetric flow arround individual spheroidal particles, Powder Technol., vol 57 pp 193-195

    Article  Google Scholar 

  • Milne-Thomson LM (1968) Theoretical Hydrodynamics, MacMillan & Co. Ltd., London

    MATH  Google Scholar 

  • Moeck ED and Stachiewicz JW (1972) A droplet interchange model for annular dispersed, two phase flow, Int. J. Heat Mass Transfer, vol 28 no 8 pp 1159-1171

    Google Scholar 

  • Moranga FJ, Bonetto FJ and Lahey KT Jr (1999) Lateral forces on spheres in turbulent uniform shear flow, Int. J. Multiphase Flow, vol 25 pp 1321-1372

    Article  Google Scholar 

  • Naciri A (1992) Contribution à l’étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques, Doctoral Dissertation, École Central de Lyon, France

    Google Scholar 

  • Nigmatulin B et al. (1978) Experimental investigation of the hydrodynamics of equilibrium dispersed-annular steam-water flow, Teplofiz. Vys. Temp., vol 16 p 1258

    Google Scholar 

  • Nigmatulin BI (1982) Heat and mass transfer and force interactions in annular - dispersed two - phase flow, 7th Int. Heat Transfer Conf., Munich, pp 337-342

    Google Scholar 

  • Oseen CW (1910) Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Ark. F. Math. Astron. Och. Fys., vol 6 no 29

    Google Scholar 

  • Prandtl L (1952) Essentials of Fluid Dynamics, Blackie & Son, Glasgow pp. 342

    MATH  Google Scholar 

  • Ratel G and Bestion D (2000) Analysis with CHATHARE code of the stratified flow regime in the MERESA hot leg entrainment tests, 38th European Two Phase Group Meeting, Karlsruhe

    Google Scholar 

  • Reed AW (Feb. 1982) The effect of channeling on the dryout of heated particulate beds immersed in a liquid pool, PhD Thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Roscoe R (1952) Brit. Appl. Phys., vol 3 p 26

    Google Scholar 

  • Roscoe R and Brit J (1952) Appl. Phys., vol 3 p 267

    Google Scholar 

  • Rousseau JC and Houdayer G (1983) Advanced safety code CATHARE summary of verification studies on separate effects experiments, Proc. NURETH-2

    Google Scholar 

  • Rybczynski W (1911) On the translatory motion of a fluid sphere in viscous medium, Bull. Acad. Sci., Krakow, Series A, pp 40-46

    Google Scholar 

  • Schiller L and Naumann AZ (1935) Z. Ver. Deut. Ing., vol 77 p 318

    Google Scholar 

  • Staffman PG (1965) The lift on a small sphere in a slow shear flow, J. Fluid Mech. vol 22 pp 385-400

    Article  Google Scholar 

  • Staffman PG (1968) Corrigendum to “The lift on a small sphere in a slow shear flow”, J. Fluid Mech. vol 31 pp 624

    Google Scholar 

  • Stephan M and Mayinger F (1990) Countercurrent flow limitation in vertical ducts at high system pressure, Hetstroni G (ed), Proc. of The Ninth International Heat Transfer Conference, Jerusalem, Israel, vol 6 pp 47-52

    Google Scholar 

  • Stokes GG (1880) Mathematical and physical papers, vol 1, Cambridge University Press, London

    Google Scholar 

  • Stuhmiller JH, Ferguson RE and Meister CA (November 1989) Numerical simulation of bubble flow, EPRI Research Project Report NP-6557

    Google Scholar 

  • Subbotin VI et al. (1978) Integrated investigation into hydrodynamics of annular dispersed steam-liquid flows, Int. Heat Transfer Conf., vol 1 p 327

    Google Scholar 

  • Tomiyama A (June 8-12, 1998) Struggle with computational bubble dynamics, Third International Conference on Multiphase Flow, ICMF 98, Lyon, France,

    Google Scholar 

  • Tomiyama A, Matsuoka T, Fukuda T and Sakaguchi T (April 3-7, 1995) A simple numerical method for solving an incompressible two/fluid model in a general curvilinear coordinate system, Proc. of The 2nd International Conference on Multiphase Flow ’95 Kyoto, Kyoto, Japan, vol 2 pp NU-23 to NU-30

    Google Scholar 

  • Tomiyama A, Sakagushi T and Minagawa H (1990) Kobe University, private communication

    Google Scholar 

  • Tomiyama A et al. (2002) Transverse migration of single bubbles in simple shear flows, Chemical Engineering Science, vol 57 pp 1849-1858

    Article  Google Scholar 

  • Tung VX and Dhir VK (1990) Finite element solution of multi-dimensional two-phase flow through porous media with arbitrary heating conditions, Int. J. Multiphase Flow, vol 16 no 6 pp 985-1002

    Article  MATH  Google Scholar 

  • Ueda T (1981) Two-phase flow - flow and heat transfer, Yokendo, Japan (in Japanese)

    Google Scholar 

  • van Wijngaarden L (1976) Hydrodynamic interaction between the gas bubbles in liquid, J. Fluid Mechanics, vol 77 pp 27-44

    Article  MATH  Google Scholar 

  • van Wijngaarden L (1998) On pseudo turbulence, Theoretical and Computational Fluid Dynamics, vol 10 pp 449–458

    Article  MATH  Google Scholar 

  • Vassallo P (1999) Near wall structure in vertical air-water annular flows, International Journal of Multiphase Flow, vol 25 pp 459-476

    Article  MATH  Google Scholar 

  • VDI-Wärmeatlas, VDI-Verlag, Düsseldorf (1991) 6. Aufl.

    Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow, New York: McGraw Hill

    Google Scholar 

  • Wang SK, Lee SJ, Jones OC and Lahey RT Jr (1987) 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiphase Flow, vol 13 no 3 pp 327-343

    Article  Google Scholar 

  • Wellek RM, Agrawal AK and Skelland AHP (1966) Shapes of liquid drops moving in liquid media, AIChE J. vol 12 p 854

    Article  Google Scholar 

  • White FM (2006) Viscous fluid flow, 3rd ed, McGraw-Hill, New York

    Google Scholar 

  • Wyckoff RD and Botset HG (1936) Physics, vol 73 p 25

    Google Scholar 

  • Zuber N (1964) On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Science, vol 49 pp 897-917

    Article  Google Scholar 

  • Zun I (1980) The transferees migration of bubbles influenced by walls in vertical bubbly flow, Int. J. Multiphase Flow, vol 6 pp 583-588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Kolev, N.I. (2007). Drag, Lift and Virtual Mass Forces. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69835-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-69835-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69834-0

  • Online ISBN: 978-3-540-69835-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics