Skip to main content

What Makes a Good (Computed) Energy Profile?

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

Abstract

A good meal cannot be defined in an absolute manner since it depends strongly on where and how it is eaten and how many people participate. A picnic shared by hikers after a challenging climbing is very different from a birthday party among a family or a banquet for a large convention. All of them can be memorable and also good. The same perspective applies to computational studies. Required level of calculations for spectroscopic properties of small molecular systems and properties of medium or large organic or organometallic, polymetallic systems are different. To well-specified chemical questions and chemical systems, efficient computational strategies can be established. In this chapter, the focus is on the energy profile representation of stoichiometric or catalytic reactions assisted by organometallic molecular entities. The multiple factors that can influence the quality of the calculations of the Gibbs energy profile and thus the mechanistic interpretation of reactions with molecular organometallic complexes are presented and illustrated by examples issued from mostly personal studies. The usual suspects to be discussed are known: representation of molecular models of increasing size, conformational and chemical complexity, methods and levels of calculations, successes and limitations of the density functional methods, thermodynamics corrections, spectator or actor role of the solvent, and static vs dynamics approaches. These well-identified points of concern are illustrated by presentation of computational studies of chemical reactions which are in direct connection with experimental data. Even if problems persist, this chapter aims at illustrating that one can reach a representation of the chemical reality that can be useful to address questions of present chemical interest. Computational chemistry is already well armed to bring meaningful energy information to numerous well-defined questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIMD:

Ab initio molecular dynamics

CCSD(T):

Coupled-cluster method with single and double excitations and perturbative triples

DFT:

Density functional theory

DLPNO:

Domain-based local pair natural orbital coupled cluster method with single, double, and perturbative triple excitations

ESI-MS:

Electrospray ionization mass spectrometry

HF:

Hartree-Fock

IGRRHO:

Ideal gas/rigid rotor/harmonic oscillator

MD:

Molecular dynamics

PES:

Potential energy surface

References

  1. Cheng G-J, Zhang X, Chung LW, Xu L, Wu Y-D (2015) Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions. J Am Chem Soc 137:1706–1725

    CAS  Google Scholar 

  2. Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115:9532–9586

    CAS  Google Scholar 

  3. Salomó E, Gallen A, Sciortino G, Ujaque G, Grabulosa A, Lledós A, Riera A, Verdaguer X (2018) Direct asymmetric hydrogenation of N-methyl and N-alkyl imines with an Ir(III)H catalyst. J Am Chem Soc 140:16967–16970

    Google Scholar 

  4. Mai BK, Himo F (2020) Mechanisms of metal-catalyzed electrophilic F/CF3/SCF3 transfer reactions from quantum chemical calculations. Top Organomet Chem. https://doi.org/10.1007/3418_2020_45

  5. Sperger T, Sanhueza IA, Schoenebeck F (2016) Computation and experiment: a powerful combination to understand and predict reactivities. Acc Chem Res 49:1311–1319

    CAS  Google Scholar 

  6. Eisenstein O (2019) Concluding remarks for “mechanistic processes in organometallic chemistry”: the importance of a multidisciplinary approach. Faraday Discuss 220:489–495

    CAS  Google Scholar 

  7. Noyori R, Richmond JP (2013) Ethical conduct in chemical research and publishing. Adv Synth Catal 355:3–8

    CAS  Google Scholar 

  8. Plata RE, Singleton DA (2015) A case study of the mechanism of alcohol-mediated Morita Baylis–Hillman reactions. The importance of experimental observations. J Am Chem Soc 137:3811–3826

    CAS  Google Scholar 

  9. Scott SL (2019) The burden of disproof. ACS Catal 9:4706–4708

    CAS  Google Scholar 

  10. Dewyer AL, Zimmerman PM (2017) Finding reaction mechanisms, intuitive or otherwise. Org Biomol Chem 15:501–504

    CAS  Google Scholar 

  11. Balcells D, Nova A (2018) Designing Pd and Ni catalysts for cross coupling reactions by minimizing off-cycle species. ACS Catal 8:3499–3515

    CAS  Google Scholar 

  12. Varela JA, Vázquez SA, Martínez-Núñez E (2017) An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis. Chem Sci 8:3843–3851

    CAS  Google Scholar 

  13. Maeda S, Morokuma K (2012) Toward predicting full catalytic cycle using automatic reaction path search method: a case study on HCo(CO)3-catalyzed hydroformylation. J Chem Theory Comput 8:380–385

    CAS  Google Scholar 

  14. Hatanaka M, Takayoshi Y, Maeda S (2020) Artificial force-induced reaction method for systematic elucidation of mechanism and selectivity in organometallic reactions. Top Organomet Chem. https://doi.org/10.1007/3418_2020_51

  15. Besora M, Maseras F (2018) Microkinetic modeling in homogeneous catalysis. WIREs Comput Mol Sci 8:e1372

    Google Scholar 

  16. Jaraíz M (2020) DFT-based microkinetic simulations: a bridge between experiment and theory in synthetic chemistry. Top Organomet Chem. https://doi.org/10.1007/3418_2020_44

  17. Sciortino G, Lledós A, Vidossich P (2019) Bonding rearrangements in organometallic reactions: from orbitals to curly arrows. Dalton Trans 48:15740–15752

    CAS  Google Scholar 

  18. Knizia G, Klein JEMN (2015) Electron flow in reaction mechanisms—revealed from first principles. Angew Chem Int Ed 54:5518–5522

    CAS  Google Scholar 

  19. Tsang AS-K, Sanhueza IA, Schoenebeck F (2014) Combining experimental and computational studies to understand and predict reactivities of relevance to homogeneous catalysis. Chem Eur J 20:16432–16441

    CAS  Google Scholar 

  20. Tantillo DJ (2018) Questions in natural products synthesis research that can (and cannot) be answered using computational chemistry. Chem Soc Rev 47:7845–7785

    CAS  Google Scholar 

  21. Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2019) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119:2453–2523

    CAS  Google Scholar 

  22. Ahn S, Hong M, Sundararajan M, Ess DH, Baik M-H (2019) Design and optimization of catalysts based on mechanistic insights derived from quantum chemical reaction modeling. Chem Rev 119:6509–6560

    CAS  Google Scholar 

  23. Perrin L, Carr KJT, McKay D, McMullin CL, Macgregor SA, Eisenstein O (2016) Modelling and rationalizing organometallic chemistry with computation: where are we? Struct Bond 167:1–38

    CAS  Google Scholar 

  24. Liu Z, Patel C, Harvey JN, Sunoj RB (2017) Mechanism and reactivity in the Morita–Baylis–Hillman reaction: the challenge of accurate computations. Phys Chem Chem Phys 19:30647–30657

    CAS  Google Scholar 

  25. Harvey JN, Himo F, Maseras F, Perrin L (2019) Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal 9:6803–6813

    CAS  Google Scholar 

  26. Ryu H, Park J, Kim HK, Park JY, Seoung-Tae Kim S-T, Baik M-H (2018) Pitfalls in computational modeling of chemical reactions and how to avoid them. Organometallics 37:3228–3239

    CAS  Google Scholar 

  27. Pidko EA (2017) Toward the balance between the reductionist and systems approaches in computational catalysis: model versus method accuracy for the description of catalytic systems. ACS Catal 7:4230–4234

    CAS  Google Scholar 

  28. Sautet P, Delbecq F (2010) Catalysis and surface organometallic chemistry: a view from theory and simulations. Chem Rev 110:1788–1806

    CAS  Google Scholar 

  29. Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L (2019) Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal 9:8481–8502

    CAS  Google Scholar 

  30. Harvey JN (2019) Mechanism and kinetics in homogeneous catalysis: a computational viewpoint. In: Broclawik E, Borowski T, Radoń M (eds) Transition metals in coordination environments. Challenges and advances in computational chemistry and physics, vol 29. Springer, Cham, pp 289–313

    Google Scholar 

  31. Neese F (2017) High-level spectroscopy, quantum chemistry, and catalysis: not just a passing fad. Angew Chem Int Ed 56:11003–11010

    CAS  Google Scholar 

  32. Mata RA, Suhm MA (2017) Benchmarking quantum chemical methods: are we heading in the right direction? Angew Chem Int Ed 56:11011–11018

    CAS  Google Scholar 

  33. Le Roux E, Malacea R, Manoury E, Poli R, Gonsalvi L, Peruzzini M (2007) Highly efficient asymmetric hydrogenation of alkyl aryl ketones catalyzed by iridium complexes with chiral planar ferrocenyl phosphino-thioether ligands. Adv Synth Catal 349:309–313

    Google Scholar 

  34. Hayes JM, Deydier E, Ujaque G, Lledós A, Malacea-Kabbara R, Manoury E, Vincendeau S, Poli R (2015) Ketone hydrogenation with iridium complexes with “non N−H” ligands: the key role of the strong base. ACS Catal 5:4368–4376

    CAS  Google Scholar 

  35. Funes-Ardoiz I, Maseras F (2018) Oxidative coupling mechanisms: current state of understanding. ACS Catal 8:1161–1172

    CAS  Google Scholar 

  36. van Niekerk JN, Schoening FRL (1953) A new type of copper complex as found in the crystal structure of cupric acetate, Cu2(CH3COO)4·2H2O. Acta Cryst 6:227–232

    Google Scholar 

  37. Tsybizova A, Ryland BL, Tsierkezos, N, Stahl SS, Roithová J, D. Schröder D (2014) Speciation behavior of copper(II) acetate in simple organic solvents – revealing the effect of trace water. Eur J Inorg Chem 2014, 1407–1412

    Google Scholar 

  38. Villuendas P, Ruiz S, Vidossich P, Lledós A, Urriolabeitia EP (2018) Selective synthesis of tetrasubstituted olefins by copper-mediated acetoxythiolation of internal alkynes: scope and mechanistic studies. Chem Eur J 24:13124–13135

    CAS  Google Scholar 

  39. Funes-Ardoiz I, Maseras F (2016) Cooperative reductive elimination: the missing piece in the oxidative-coupling mechanistic puzzle. Angew Chem Int Ed 55:2764–2767

    CAS  Google Scholar 

  40. Kim S-T, Kim S, Baik M-H (2020) How bulky ligands control the chemoselectivity of Pd-catalyzed N-arylation of ammonia. Chem Sci 11:1017–1025

    CAS  Google Scholar 

  41. Halaska V, Lochmann L, Lím D (1968) Association degree of t-butoxides of alkali metals in aprotic solvents. Collect Czechoslov Chem Commun 33:3245–3253

    CAS  Google Scholar 

  42. Kissling RM, Gagné MR (2001) Structure and reactivity of mixed alkali metal alkoxide/aryloxide catalysts. J Org Chem 66:9005–9010

    CAS  Google Scholar 

  43. Macchioni A (2005) Ion pairing in transition-metal organometallic chemistry. Chem Rev 105:2039–2074

    CAS  Google Scholar 

  44. Clot E (2009) Ion-pairing in organometallic chemistry: structure and influence on proton transfer from a computational perspective. Eur J Inorg Chem 2009:2319–2328

    Google Scholar 

  45. Jiménez-Tenorio M, Puerta MC, Valerga P, Ortuño MA, Ujaque G, Lledós A (2013) Counteranion and solvent assistance in ruthenium-mediated alkyne to vinylidene isomerizations. Inorg Chem 52:8919–8932

    Google Scholar 

  46. Ciancaleoni G, Belpassi L, Zuccaccia D, Tarantelli F, Belanzoni P (2015) Counterion effect in the reaction mechanism of NHC gold(I)-catalyzed alkoxylation of alkynes: computational insight into experiment. ACS Catal 5:803–814

    CAS  Google Scholar 

  47. Jia M, Bandini M (2015) Counterion effects in homogeneous gold catalysis. ACS Catal 5:1638–1652

    CAS  Google Scholar 

  48. Yuan B, He R, Guo X, Shen W, Zhang F, Xu Y, Li M (2018) DFT study on the au(I)-catalyzed cyclization of indole-allenoate: counterion and solvent effects. New J Chem 42:15618–15628

    CAS  Google Scholar 

  49. Liang Z, Yang T, Gu G, Dang L, Zhang X (2018) Scope and mechanism on iridium-f-amphamide catalyzed asymmetric hydrogenation of ketones. Chin J Chem 36:851–856

    CAS  Google Scholar 

  50. Pavlova A, Trinh TT, van Santen RA, Meijer EJ (2013) Clarifying the role of sodium in the silica oligomerization reaction. Phys Chem Chem Phys 15:1123–1129

    CAS  Google Scholar 

  51. Bielinski EA, Forster M, Zhang Y, Bernskoetter WH, Hazari N, Holthausen MC (2015) Base-free methanol dehydrogenation using a pincer-supported iron compound and Lewis acid co-catalyst. ACS Catal 5:2404–2415

    CAS  Google Scholar 

  52. Govindarajan N, Meijer EJ (2019) Elucidating cation effects in homogeneously catalyzed formic acid dehydrogenation. Faraday Discuss 220:404–413

    CAS  Google Scholar 

  53. Pérez-Rodríguez M, Braga AAC, García-Melchor M, Pérez-Temprano M, Casares JA, Ujaque G, de Lera AR, Álvarez R, Maseras F, Espinet P (2009) C-C reductive elimination in palladium complexes, and the role of coupling additives. A DFT study supported by experiment. J Am Chem Soc 131:3650–3657

    Google Scholar 

  54. Goliaszewski A, Schwartz J (1984) Carbon-carbon bond formation by induced elimination from unsymmetrically substituted (allyl)(allyl')palladium complexes. J Am Chem Soc 106:5028–5030

    CAS  Google Scholar 

  55. Kluwer AM, Elsevier CJ, Bühl M, Lutz M, Spek A (2003) Zero-valent palladium complexes with monodentate nitrogen σ-donor ligands. Angew Chem Int Ed 42:3501–3504

    CAS  Google Scholar 

  56. Zhao X, Ma X, Zhu R, Zhang D (2020) Mechanism and origin of MAD-induced Ni/N-heterocyclic carbene-catalyzed regio- and enantioselective C-H cyclization of pyridines with alkenes. Chem Eur J 26:5459–5468

    CAS  Google Scholar 

  57. Besora M, Braga AAC, Ujaque G, Maseras F, Lledós A (2011) The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theor Chem Accounts 128:639–646

    CAS  Google Scholar 

  58. Munkerup K, Thulin M, Tan D, Lim X, Lee R, Huang K-W (2019) Importance of thorough conformational analysis in modelling transition metal-mediated reactions: case studies on pincer complexes containing phosphine groups. J Saudi Chem Soc 23:1206–1218

    CAS  Google Scholar 

  59. Vitek AK, Jugovic TME, Zimmerman PM (2020) Revealing the strong relationships between ligand conformers and activation barriers: a case study of bisphosphine reductive elimination. ACS Catal 10:7136–7145

    CAS  Google Scholar 

  60. Lepori C, Gómez-Orellana P, Ouharzoune A, Guillot R, Lledós A, Ujaque G, Hannedouche J (2018) Well-defined β-diketiminatocobalt(II) complexes for alkene cyclohydroamination of primary amines. ACS Catal 8:4446–4451

    CAS  Google Scholar 

  61. Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60:1271–1277

    Google Scholar 

  62. Li P, Merz Jr KM (2016) MCPB.py: a python based metal center parameter builder. J Chem Inf Model 56:599–604

    CAS  Google Scholar 

  63. Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK (2014) Assembly-line synthesis of organic molecules with tailored shapes. Nature 513:183–188

    CAS  Google Scholar 

  64. Yepes D, Neese F, List B, Bistoni G (2020) Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using high-level computational methods. J Am Chem Soc 142:3613–3625

    CAS  Google Scholar 

  65. Bryantsev VS, Diallo MS, Goddard III WA (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719

    CAS  Google Scholar 

  66. Qi S-C, Hayashi J-I, Zhang L (2016) Recent application of calculations of metal complexes based on density functional theory. RSC Adv 6:77375–77395

    CAS  Google Scholar 

  67. Liakos DG, Sparta M, Kesharwani MK, Martin JML, Neese F (2015) DLPNO benchmark: exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J Chem Theory Comput 11:1525–1539

    CAS  Google Scholar 

  68. Hopmannm KH (2016) How accurate is DFT for iridium-mediated chemistry? Organometallics 35:3795–3807

    Google Scholar 

  69. Sun Y, Chen H (2016) DFT methods to study the reaction mechanism of iridium-catalyzed hydrogenation of olefins: which functional should be chosen? ChemPhysChem 17:119–127

    CAS  Google Scholar 

  70. Rohmann K, Hölscher M, Leitner W (2016) Can contemporary density functional theory predict energy spans in molecular catalysis accurately enough to be applicable for in silico catalyst design? A computational/experimental case study for the ruthenium-catalyzed hydrogenation of olefins. J Am Chem Soc 138:433–443

    CAS  Google Scholar 

  71. Lyngvi E, Sanhueza IA, Schoenebeck F (2015) Dispersion makes the difference: bisligated transition states found for the oxidative addition of Pd(PtBu3)2 to Ar-OSO2R and dispersion-controlled chemoselectivity in reactions with Pd[P(iPr)(tBu2)]2. Organometallics 34:805–812

    CAS  Google Scholar 

  72. Swart M (2020) Dealing with spin states in computational organometallic catalysis. Top Organomet Chem. https://doi.org/10.1007/3418_2020_49

  73. Radon M (2014) Revisiting the role of exact exchange in DFT spin-state energetics of transition metal complexes. Phys Chem Chem Phys 6:14479–14488

    Google Scholar 

  74. Feldt M, Phung QM, Pierloot K, Mata RA, Harvey JN (2019) Limits of coupled-cluster calculations for non-heme iron complexes. J Chem Theory Comput 15:922–937

    Google Scholar 

  75. Flöser BM, Guo Y, Riplinger C, Tuczek F, Neese F (2020) Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics. J Chem Theory Comput 16:2224–2235

    Google Scholar 

  76. Watson LA, Eisenstein O (2002) Entropy explained: the origin of some simple trends. J Chem Ed 79:1269–1277

    CAS  Google Scholar 

  77. Izato Y-I, Matsugi A, Koshic M, Miyake A (2019) A simple heuristic approach to estimate the thermochemistry of condensed-phase molecules based on the polarizable continuum model. Phys Chem Chem Phys 21:18920–18929

    CAS  Google Scholar 

  78. González-Fabra J, Castro-Gómez F, Sameera WMC, Nyman G, Kleij AW, Bo C (2019) Entropic corrections for the evaluation of the catalytic activity in the Al(III) catalysed formation of cyclic carbonates from CO2 and epoxides. Cat Sci Technol 9:5433–5440

    Google Scholar 

  79. Besora M, Vidossich P, Lledós A, Ujaque G, Maseras F (2018) Calculation of reaction free energies in solution: a comparison of current approaches. J Phys Chem A 122:1392–1399

    CAS  Google Scholar 

  80. Vidossich P, Lledós A, Ujaque G (2016) First-principles molecular dynamics studies of organometallic complexes and homogeneous catalytic processes. Acc Chem Res 49:1271–1278

    CAS  Google Scholar 

  81. Mammen M, Shakhnovich EI, Deutch JM, Whitesides GM (1998) Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid·melamine lattice. J Org Chem 63:3821–3830

    CAS  Google Scholar 

  82. Martin RL, Hay PJ, Pratt LR (1998) Hydrolysis of ferric ion in water and conformational equilibrium. J Phys Chem A 102:3565–3573

    CAS  Google Scholar 

  83. Wertz DH (1980) Relationship between the gas-phase entropies of molecules and their entropies of solvation in water and 1-octanol. J Am Chem Soc 102:5316–5322

    CAS  Google Scholar 

  84. Ribeiro RFM, Marenich AB, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562

    CAS  Google Scholar 

  85. Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18:9955–9964

    CAS  Google Scholar 

  86. McMullin CL, Jover J, Harvey JN, Fey N (2010) Accurate modelling of Pd(0) + PhX oxidative addition kinetics. Dalton Trans 39:10833–10836

    CAS  Google Scholar 

  87. Copéret C, Chabanas M, Saint-Arroman RP, Basset J-M (2003) Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew Chem Int Ed 42:156–181

    Google Scholar 

  88. Wischert R, Laurent P, Copéret C, Delbecq F, Sautet P (2012) γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites. J Am Chem Soc 134:14430–14449

    CAS  Google Scholar 

  89. Grau E, Lesage A, Norsic S, Copéret C, Monteil V, Sautet P (2013) Tetrahydrofuran in TiCl4/THF/MgCl2: a non-innocent ligand for supported Ziegler–Natta polymerization catalysts. ACS Catal 3:52–56

    CAS  Google Scholar 

  90. Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44:2336–2354

    Google Scholar 

  91. Roithová J, Schröder D (2010) Selective activation of alkanes by gas-phase metal ions. Chem Rev 110:1170–1211

    Google Scholar 

  92. Schröder D (2012) Applications of electrospray ionization mass spectrometry in mechanistic studies and catalysis research. Acc Chem Res 45:1521–1532

    Google Scholar 

  93. Schwarz H (2014) How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr J Chem 54:1413–1431

    CAS  Google Scholar 

  94. Schwarz H (2017) Metal-mediated activation of carbon dioxide in the gas phase: Mechanistic insight derived from a combined experimental/computational approach. Coord Chem Rev 334:112–123

    CAS  Google Scholar 

  95. Gerdes G, Chen P (2003) Comparative gas-phase and solution-phase investigations of the mechanism of C−H activation by [(N−N)Pt(CH3)(L)]+. Organometallics 22:2217–2225

    CAS  Google Scholar 

  96. Labinger JA, Bercaw JE, Tilset M (2006) C−H activation by platinum(II): what do gas-phase studies tell us about the solution-phase mechanism? Organometallics 25:805–808

    CAS  Google Scholar 

  97. Gerdes G, Chen P (2006) Response to: “C−H activation by platinum(II): what do gas-phase studies tell us about the solution-phase mechanism?”. Organometallics 25:809–811

    CAS  Google Scholar 

  98. Serra D, Moret M-E, Chen P (2011) Transmetalation of methyl groups supported by PtII–AuI bonds in the gas phase, in silico, and in solution. J Am Chem Soc 133:8914–8926

    CAS  Google Scholar 

  99. Jašíková L, Anania M, Hybelbauerová S, Roithová J (2015) Reaction intermediates kinetics in solution investigated by electrospray ionization mass spectrometry: diaurated complexes. J Am Chem Soc 137:13647–13657

    Google Scholar 

  100. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    CAS  Google Scholar 

  101. Blomberg MRA, Borowski T, Himo F, Liao R-Z, Siegbahn PEM (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658

    CAS  Google Scholar 

  102. Sunoj RB, Anand M (2012) Microsolvated transition state models for improved insight into chemical properties and reaction mechanisms. Phys Chem Chem Phys 14:12715–12736

    CAS  Google Scholar 

  103. Fehér PP, Stirling A (2019) Assessment of reactivities with explicit and implicit solvent models: QM/MM and gas-phase evaluation of three different Ag-catalysed furan ring formation routes. New J Chem 43:15706–15713

    Google Scholar 

  104. Zeifman AA, Novikov FN, Stroylov VS, Stroganov OV, Svitanko IV, Chilov GG (2015) An explicit account of solvation is essential for modeling Suzuki–Miyaura coupling in protic solvents. Dalton Trans 44:17795–17779

    CAS  Google Scholar 

  105. Handgraaf J-W, Meijer EJ (2007) Realistic modeling of ruthenium-catalyzed transfer hydrogenation. J Am Chem Soc 129:3099–3103

    CAS  Google Scholar 

  106. Abril PM, del Río MP, López JA, Lledós A, Ciriano MA, Tejel C (2019) Inner-sphere oxygen activation promoting outer-sphere nucleophilic attack on olefins. Chem Eur J 25:14546–14554

    CAS  Google Scholar 

  107. del Pozo J, Pérez-Iglesias M, Álvarez R, Lledós A, Casares JA, Espinet P (2017) Speciation of ZnMe2, ZnMeCl, and ZnCl2 in tetrahydrofuran (THF), and its influence on mechanism calculations of catalytic processes. ACS Catal 7:3575–3583

    Google Scholar 

  108. Ortuño MA, Lledós A, Maseras F, Ujaque G (2014) The transmetalation process in Suzuki–Miyaura reactions: calculations indicate lower barrier via boronate intermediate. ChemCatChem 6:3132–3138

    Google Scholar 

  109. Norjmaa G, Maréchal J-D, Ujaque G (2019) Microsolvation and encapsulation effects on supramolecular catalysis: C–C reductive elimination inside [Ga4L6]12− metallocage. J Am Chem Soc 141:13114–13123

    CAS  Google Scholar 

  110. Alonso-Cotchico L, Sciortino G, Vidossich P, Pedregal JR-G, DrienovskÁ I, Roelfes G, Lledós A, Maréchal J-D (2019) Integrated computational study of the Cu-catalyzed hydration of alkenes in water solvent and into the context of an artificial metallohydratase. ACS Catal 9:4616–4626

    CAS  Google Scholar 

  111. Peltzer RM, Eisenstein O, Nova A, Cascella M (2017) How solvent dynamics controls the Schlenk equilibrium of Grignard reagents: a computational study of CH3MgCl in tetrahydrofuran. J Phys Chem B 121:4226–4237

    CAS  Google Scholar 

  112. Peltzer RM, Gauss J, Eisenstein O, Cascella M (2020) The Grignard reaction – unraveling a chemical puzzle. J Am Chem Soc 142:2984–2994

    CAS  Google Scholar 

  113. Stauber JM, Bloch ED, Vogiatzis KD, Zheng SL, Hadt RG, Hayes D, Chen LX, Gagliardi L, Nocera DG, Cummins CC (2020) Retraction of pushing single-oxygen-atom bridged bimetallic systems to the right: a cryptand-encapsulated Co-O-Co unit. J Am Chem Soc 142:6834

    CAS  Google Scholar 

  114. Basch H, Musaev DG, Morokuma K, Fryzuk MD, Love JB, Seidel WW, Albinati A, Koetzle TF, Klooster WT, Mason SA, Eckert J (1999) Theoretical predictions and single-crystal neutron diffraction and inelastic neutron scattering studies on the reaction of dihydrogen with the dinuclear dinitrogen complex of zirconium [P2N2]Zr(μ-η2-N2)Zr[P2N2], P2N2 = PhP(CH2SiMe2NSiMe2CH2)2PPh. J Am Chem Soc 121:523–528

    CAS  Google Scholar 

  115. Clot E, Eisenstein O, Weng T-C, Penner-Hahn J, Caulton KG (2004) Is the allylpalladium structure altered between solid and solutions? J Am Chem Soc 126:9079–9084

    CAS  Google Scholar 

  116. Campos J, Sharninghausen LS, Crabtree RH, Balcells D (2014) A carbene-rich but carbonyl-poor [Ir6(IMe)8(CO)2H14]2+ polyhydride cluster as a deactivation product from catalytic glycerol dehydrogenation. Angew Chem Int Ed 53:12808–12811

    CAS  Google Scholar 

  117. Sharninghausen LS, Mercado BQ, Hoffmann C, Wang XP, Campos J, Crabtree RH, Balcells D (2017) The neutron diffraction structure of [Ir4(IMe)8H10]2+ polyhydride cluster: testing the computation hydride positional assignments. J Organomet Chem 849-850:17–21

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support (GU and AL) was provided by the Spanish Ministerio de Economía y Competitividad (MINECO) (Grant CTQ2017-87889-P). OE was in part supported by Research Council of Norway (RCN) through the COE Hylleraas Center for Quantum Molecular Sciences (Grant number 262695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustí Lledós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eisenstein, O., Ujaque, G., Lledós, A. (2020). What Makes a Good (Computed) Energy Profile?. In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_57

Download citation

Publish with us

Policies and ethics