Skip to main content

Hypotheses concerning the mechanism of action of antidepressant drugs

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 100

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 100))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cAMP:

adenosine 3′,5′-monophosphate

cGMP:

guanosine 5′-monophosphate

DBH:

dopamine-β-hydroxylase

DOPEG:

3,4-dihydroxyphenylglycol

DOPAC:

3,4-dihydroxyphenylacetic acid

5-HIAA:

5-hydroxyindoleacetic acid

5-HT:

5-hydroxytryptamine

HVA:

homovanillic acid

MAO:

monoamine oxidase

MOPEG:

3-methoxy-4-hydroxyphenylglycol

α-MT:

α-methyl-p-tyrosine

NMN:

normetanephrine

REM:

rapid eye movement

References

  • Alpers HS, Himwich HE (1972) The effect of chronic imipramine administration on rat brain levels of serotonin, 5-hydroxyindoleacetic acid, norepinephrine and dopamine. J Pharmacol Exp Ther 180:531–538

    Google Scholar 

  • Antelman SM, Caggiula AR (1977) Norepinephrine-dopamine interactions and behavior. Science 195:646–653

    Google Scholar 

  • Antelman SM, Chiodo LA, DeGiovanni LA (1982) Antidepressants and dopamine autoreceptors: implications for both a novel means of treating depression and understanding bipolar illness. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychoparmacology, vol 31, pp 121–132)

    Google Scholar 

  • Asakura M, Tsukamoto T, Hasegawa K (1982) Modulation of rat brain α2-and β-adrenergic receptor sensitivity following long-term treatment with antidpressants. Brain Res 235:192–197

    Google Scholar 

  • Banerjee SP, Kung LS, Riggi SJ, Chanda SK (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 278:455–456

    Google Scholar 

  • Banerjee SP, Sharma VK, Kung LS, Chanda SK (1978) Amphetamine induces β-adrenergic receptor supersensitivity. Nature 271:380–381

    Google Scholar 

  • Banerjee SP, Sharma VK, Kung-Cheung LS, Chanda SK, Riggi SJ (1979) Cocaine and d-amphetamine induce changes in central β-adrenoceptor sensitivity: effects of acute and chronic drug treatment. Brain Res 175:119–130

    Google Scholar 

  • Baumann PA, Maître L (1977) Blockade of presynaptic α-receptors and of amine uptake in the rat brain by the antidepressant mianserin. Naunyn Schmiedebergs Arch Pharmacol 300:31–37

    Google Scholar 

  • Bednarczyk B, Vetulani J (1978) Antagomism of clonidine to shaking behavior in morphine abstinence syndrome and to head twitches produced by serotonergic agents in the rat. Pol J Pharmacol Pharm 30:307–322

    Google Scholar 

  • Bergstrom DA, Kellar KJ (1979a) Adrenergic and serotonergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exp Ther 209:256–261

    Google Scholar 

  • Bergstrom DA, Kellar KJ (1979b) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278:363–466

    Google Scholar 

  • Bevan P, Bradshaw CM, Szabadi E (1977) The pharmacology of adrenergic neuronal responses in the cerebral cortex: evidence for excitatory α-and inhibitory β-receptors. Br J Pharmacol 59:635–641

    Google Scholar 

  • Biel JH, Nuhfer PA, Hoya WK, Leiser HA, Abood LG (1962) Cholinergic blockade as an approach to the development of new psychotropic agents. Ann NY Acad Sci 96:251–262

    Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221:303–308

    Google Scholar 

  • Bohman B, Halaris A, Karbowski M (1981) Effects of tricyclic antidepressants on muscarinic cholinergic receptor binding in mouse brain. Life Sci 29:833–841

    Google Scholar 

  • Briley M, Raisman R, Arbilla S, Casadamont M, Langer SZ (1982) Concomitant decrease in [3H]imipramine binding in cat brain and platelets after chronic treatment with imipramine. Eur J Pharmacol 81:309–314

    Google Scholar 

  • Brogden R, Heel R, Speight T, Avery S (1979) Nomifensine: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 18:1–24

    Google Scholar 

  • Brogden RN, Heel RC, Speight TM, Avery GS (1981) Trazodone: a review of its pharmacological properties and therapeutic use in depression and anxiety. Drugs 21:401–429

    Google Scholar 

  • Brunello N, Barbaccia ML, Chuang DM, Costa E (1982) Down-regulation of β-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology 21:1145–1149

    Google Scholar 

  • Bunney WE, Davis JM (1965) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13:483–494

    Google Scholar 

  • Campbell IC, McKernan RM (1982) Central and peripheral changes in α-adrenoceptors in the rat after chronic tricyclic antidepressants. Br J Pharmacol (Suppl) 75:100 P

    Google Scholar 

  • Campbell IC, Robinson DS, Lovenberg W, Murphy DL (1979) The effects of chronic regimens of clorgyline and pargyline on monoamine metabolism in the rat brain. J Neurochem 32:49–55

    Google Scholar 

  • Carlsson A, Lindqvist M (1978) Effects of antidepressant agents on the synthesis of brain monoamines. J Neural Transm 43:73–91

    Google Scholar 

  • Carlsson A, Fuxe K, Hamberger B, Lindqvist M (1966) Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta Physiol Scand 67:481–497

    Google Scholar 

  • Carlsson A, Corrodi H, Fuxe K, Hökfelt T (1969a) Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Eur J Pharmacol 5:367–373

    Google Scholar 

  • Carlsson A, Corrodi H, Fuxe K, Hökfelt T (1969b) Effects of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. Eur J Pharmacol 5:357–366

    Google Scholar 

  • Carrol BJ (1982) Clinical applications of the dexamethasone suppression test for endogenous depression. Pharmacopsychiatria 15:19–24

    Google Scholar 

  • Charney DS, Menkes DB, Heninger GR (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch Gen Psychiatry 38:1160–1180

    Google Scholar 

  • Checkley SA, Slade AP, Shur E (1981) Growth hormone and other responses to clonidine in patients with endogenous depression. Br J Psychiatr 138:51–55

    Google Scholar 

  • Chiodo LA, Antelman SM (1980) Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287:451–454

    Google Scholar 

  • Claassen V, Davies JE, Hertting G, Placheta P (1977) Fluvoxamine, a specific 5-hydroxytryptamine uptake inhibitor. Br J Pharmacol 60:505–516

    Google Scholar 

  • Clements-Jewery S (1978) The development of cortical β-adrenoceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserine. Neuropharmacology 17:779–781

    Google Scholar 

  • Cohen RM, Campbell IC, Dauphin M, Tallman JF, Murphy DL (1982) Changes in α-and β-receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepressants. Neuropharmacology 21:293–298

    Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    Google Scholar 

  • Corrodi H, Fuxe K (1969) Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type. Eur J Pharmacol 7:56–59

    Google Scholar 

  • Costain DW, Green AR, Grahame-Smith DG (1979) Enhanced 5-hydroxytryptamine-mediated behavioural responses in rats following repeated electroconvulsive shock: relevance to the mechanism of the antidepressive therapy. Psychopharmacology (Berlin) 61:167–170

    Google Scholar 

  • Dam Trung Tuong M, Garbarg M, Schwartz JC (1980) Pharmacological specificity of brain histamine H2-receptors differs in intact cells and cell-free preparations. Nature 287:548–551

    Google Scholar 

  • Daniel W, Adamus A, Melzacka M, Szymura J, Vetulani J (1981) Cerebral pharmacokinetics of imipramine in rats after single and multiple dosages. Naunyn Schmiedebergs Arch Pharmacol 317:209–213

    Google Scholar 

  • Davis M, Menkes DB (1982) Tricyclic antidepressants vary in decreasing α2-adrenoceptor sensitivity with chronic treatment: assessment with clonidine inhibition of acoustic startle. Br J Pharmacol 77:217–222

    Google Scholar 

  • Deakin JFW, Owen F, Cross AJ, Dashwood MJ (1981) Studies on possible mechanisms of action of electroconvulsive therapy; effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology (Berlin) 73:345–349

    Google Scholar 

  • Delini-Stula A (1978) Effect of single and repeated treatment with antidepressants on clonidine-induced hypoactivity in the rat. Naunyn Schmiedebergs Arch Pharmacol 302 (Suppl): R57 (Abstr 226)

    Google Scholar 

  • Delini-Stula A, Vassout A (1979) Modulation of dopamine-mediated behavioural responses by antidepressants. Effects of single and repeated treatment. Eur J Pharmacol 58:443–451

    Google Scholar 

  • Delini-Stula A, Hauser K, Baumann P, Olpe HR, Waldmeier P, Storni A (1982) Stereospecificity of behavioural and biochemical responses to oxaprotiline — a new anti-depressant. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 265–275)

    Google Scholar 

  • Desmukh PP, Nelson DL, Yamamura HI (1982) Autoradiographic localization of 5-HT1 receptor subtypes in rat brain. Proc West Pharmacol Soc 25:83–86

    Google Scholar 

  • Diffley D, Tran VT, Snyder SH (1980) Histamine H1-receptors labeled in vivo: anti-depressant and antihistamine interactions. Eur J Pharmacol 64:177–181

    Google Scholar 

  • Dillier N, Laszlo J, Müller B, Koella WP, Olpe HR (1978) Activation of an inhibitory noradrenergic pathway projecting from the locus coeruleus to the cingulate cortex of the rat. Brain Res 154:61–68

    Google Scholar 

  • Doxey JC, Hewlett DR, Roach AG ((1981) Assessment of the α-adrenoceptor selectivity of WB 4101: a comparison with prazosin and phentolamine. In: Proceedings of the British Pharmacological Society, pp 262P–263P

    Google Scholar 

  • Ebert MH, Baldessarini RJ, Lipensky JF, Berv K (1973) Effect of electroconvulsive seizures on amine metabolism in the rat brain. Arch Gen Psychiatry 29:397–401

    Google Scholar 

  • Engel J, Hanson LCF, Roos B-E (1971) Effect of electroshock on 5-HT metabolism in rat brain. Psychopharmacologia (Berlin) 20:197–200

    Google Scholar 

  • Enna SJ, Mann E, Kendall D, Stancel GM (1981) Effect of chronic antidepressant administration of brain neurotransmitter receptor binding. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral, and clinical perspectives. Raven Press, New York, pp 91–105

    Google Scholar 

  • Evans JPM, Grahame-Smith DG, Green AR, Tordoff AFC (1976) Electroconvulsive shock increases the behavioural responses of rats to brain 5-hydroxytryptamine accumulation and central nervous system stimulant drugs. Br J Pharmacol 56:193–199

    Google Scholar 

  • Ferris RM, Maxwell RA, Cooper BR, Soroko FE (1982) Neurochemical and neuropharmacological investigations into the mechanisms of action of bupropion HCl — a new atypical antidepressant agent. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 277–286)

    Google Scholar 

  • Fibiger HC, Phillips AG (1981) Increased intracranial self-stimulation in rats after long-term administration of desipramine. Science 214:683–684

    Google Scholar 

  • Fludder JM, Leonard BE (1979a) The effects of amitriptyline, mianserin, phenoxy-benzamine and propranolol on the release of noradrenaline in the rat brain in vivo. Biochem Pharmacol 28:2333–2336

    Google Scholar 

  • Fludder JM, Leonard BE (1979b) Chronic effects of mianserin on noradrenaline metabolism in the rat brain: evidence for a presynaptic α-adrenolytic action in vivo. Psychopharmacology (Berlin) 64:329–332

    Google Scholar 

  • Frazer A, Mendels J (1977) Do tricyclic antidepressants enhance adrenergic transmission? Am J Psychiatry 134:1040–1042

    Google Scholar 

  • Frazer A, Hess ME, Mendels J, Gable B, Kunkel E, Bender A (1978) Influence of acute and chronic treatment with desmethylimipramine on catecholamine effects of the rat. J Pharmacol Exp Ther 206:311–319

    Google Scholar 

  • Friedman E, Dallob A (1979) Enhanced serotonin receptor activity after chronic treatment with imipramine or amitriptyline. Commun Psychopharmacol 3:89–92

    Google Scholar 

  • Friedman E, Shopsin B, Goldstein M, Gershon S (1974) Interactions of imipramine and synthesis inhibitors on biogenic amines. J Pharm Pharmacol 26:995–997

    Google Scholar 

  • Fuller RW (1982) Drugs acting on serotonergic neuronal systems. In: Osborne NN (ed) Biology of serotonergic transmission. Wiley, Chichester, pp 221–247

    Google Scholar 

  • Fuxe K, Ögren SO, Agnati LF (1979) The effects of chronic treatment with 5-hydroxytryptamine uptake blocker zimelidine on central 5-hydroxytryptamine mechanisms. Evidence for the induction of a low affinity binding site for 5-hydroxytryptamine. Neurosci Lett 13:307–312

    Google Scholar 

  • Fuxe K, Ögren SO, Agnati LF, Andersson K, Eneroth P (1982) Effects of subchronic antidepressant drug treatment on central serotonergic mechanisms in the male rat. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 91–107)

    Google Scholar 

  • Gallager DW, Bunney WE Jr (1979) Failure of chronic lithium treatment to block tricyclic antidepressant-induced 5-HT supersensitivity. Naunyn Schmiedebergs Arch Pharmacol 307:129–133

    Google Scholar 

  • Ghose K, Gupta R, Coppen A, Lund J (1977) Antidepressant evaluation and the pharmacological action of FG-4963 in depressive patients. Eur J Pharmacol 42:31–37

    Google Scholar 

  • Gillespie DD, Manier DH, Sulser F (1979) Electroconvulsive treatment: rapid subsensitivity of the norepinephrine receptor coupled adenylate cyclase system in brain linked to down regulation of β-adrenergic receptors. Commun Psychopharmacol 3:191–195

    Google Scholar 

  • Glowinski J, Axelrod J (1964) Inhibition of uptake of triated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204:1318–1319

    Google Scholar 

  • Gluckman MI, Baum T (1969) The pharmacology of iprindole, a new antidepressant. Psychopharmacologia (Berlin) 15:169–185

    Google Scholar 

  • Goodlet I, Sugrue MF (1974) Effect of acutely administered analgesic drugs on rat brain serotonin turnover. Eur J Pharmacol 29:241–248

    Google Scholar 

  • Górka Z, Zacny E (1981) The effect of single and chronic administration of imipramine on clonidine-induced hypothermia in the rat. Life Sci 28:2847–2854

    Google Scholar 

  • Grahame-Smith DG, Green AR, Costain DW (1978) Mechanism of the antidepressant action of electroconvulsive therapy. Lancet I:254–256

    Google Scholar 

  • Green AR (1980) The behavioural and biochemical consequences of repeated electroconvulsive shock administration to rats and the possible clinical relevance of these changes. In: Enzymes and neurotransmitters in mental disease. Wiley, Chichester, pp 455–467

    Google Scholar 

  • Green AR, Heal DJ, Grahame-Smith DG (1977) Further observations on the effect of repeated electroconvulsive shock on the behavioural responses of rats produced by increases in the functional activity of brain 5-hydroxytryptamine and dopamine. Psychopharmacology (Berlin) 52:195–200

    Google Scholar 

  • Green JP, Maayani S (1977) Tricyclic antidepressant drugs block histamine H2 receptor in brain. Nature 269:163–165

    Google Scholar 

  • Greenwood DT (1982) Voloxazine and neurotransmitter function. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 287–300)

    Google Scholar 

  • Gulati A, Nath C, Dhawan KN, Bhargava KP, Agarwal AK, Seth PK (1982) Effect of electroconvulsive shock on central cholinergic (muscarinic) receptors. Brain Res 240:357–358

    Google Scholar 

  • Haas HL (1979) Histamine and noradrenaline are blocked by amitriptyline on cortical neurones. Agents Actions 9:83–84

    Google Scholar 

  • Halaris AE, Belendiuk KT, Freedman DX (1975) Antidepressant drugs affect dopamine uptake. Biochem Pharmacol 24:1896–1898

    Google Scholar 

  • Hall H, Ögren SO (1981) Effects of antidepressant drugs on different receptors in the brain. Eur J Pharmacol 70:393–407

    Google Scholar 

  • Hall H, Sällemark M, Ross SB (1980) Clenbuterol, a central β-adrenoceptor agonist. Acta Pharmacol Toxicol (Copenh) 47:159–160

    Google Scholar 

  • Hallberg H, Ahugren O, Svensson TH (1981) Increased brain serotonergic and noradrenergic activity after repeated systemic administration of the beta-2 adrenoceptor agonist salbutamol, a putative antidepressant drug. Psychopharmacology (Berlin) 73:201–204

    Google Scholar 

  • Harden TK, Mailman RB, Mueller RA, Breese GR (1979) Noradrenergic hyperinnervation reduces the density of β-adrenergic receptors in rat cerebellum. Brain Res 166:194–198

    Google Scholar 

  • Heal DJ, Akagi H, Bowdler JM, Green AR (1981) Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in rodents. Eur J Pharmacol 75:231–237

    Google Scholar 

  • Hertz L, Mukerji S, Richardson JS (1981) Down regulation of β-adrenergic activity in astroglia by chronic treatment with an antidepressant drug. Eur J Pharmacol 72:267–268

    Google Scholar 

  • Hinsley RK, Norton JA, Aprison MH (1968) Serotonin, norepinephrine and 3,4-dihydroxyphenylethylamine in rat brain parts following electroconvulsive shock. J Psychiatr Res 6:143–152

    Google Scholar 

  • Holcomb HH, Bannon MJ, Roth RH (1982) Striatal dopamine autoreceptors uninfluenced by chronic administration of antidepressants. Eur J Pharmacol 82:173–178

    Google Scholar 

  • Honegger UE, Bickel MH (1980) Differential desensitization of central and peripheral beta-adrenergic receptors by psychotropic drugs. In: Usdin E, Eckert B, Forrest IS (eds) Phenothiazines and structurally related drugs: basic and clinical studies. Elsevier, Amsterdam, pp 245–248

    Google Scholar 

  • Hu HYY, Davis JM, Heinze WJ, Pandey GN (1980) Effect of chronic treatment with antidepressants on beta-adrenergic receptor binding in guinea pig brain. Biochem Pharmacol 29:2895–2896

    Google Scholar 

  • Hu HYY, Davis JM, Pandey GN (1981) Characterization of alpha-adrenergic receptors in guinea pig cerebral cortex: effect of chronic antidepressant treatments. Psychopharmacology (Berlin) 74:201–203

    Google Scholar 

  • Huang YH (1979) Chronic desipramine treatment increases activity of noradrenergic postsynaptic cells. Life Sci 25:709–716

    Google Scholar 

  • Huang YH, Mass JW, Hu GH (1980) The time course of noradrenergic pre-and post-synaptic activity during chronic desipramine treatment. Eur J Pharmacol 68:41–47

    Google Scholar 

  • Hwang EC, Van Woert MH (1980) Acute versus chronic effects of serotonin uptake blockers on potentiation of the “serotonin syndrome”. Commun Psychopharmacol 4:161–167

    Google Scholar 

  • Hyttel J (1982) Citalopram / pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 6:277–295

    Google Scholar 

  • Iversen L (1965) Inhibition of noradrenaline uptake by drugs. J Pharm Pharmacol 17:62–64

    Google Scholar 

  • Janowsky A, Okada F, Manier DH, Applegate CD, Sulser F, Steranka LR (1982) Role of serotonergic input in the regulation of the β-adrenergic receptor-coupled adenylate cyclase system. Science 218:900–901

    Google Scholar 

  • Janowsky DS, El-Youseff MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet II:632–635

    Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Wiech N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on α 2-and β-adrenoceptor sensitivity. Eur J Pharmacol 67:123–127

    Google Scholar 

  • Jones RSG (1980a) Enhancement of 5-hydroxytryptamine-induced behavioral effects following chronic administration of antidepressant drugs. Psychopharmacology (Berlin) 69:307–311

    Google Scholar 

  • Jones RSG (1980b) Long-term administration of atropine, imipramine and viloxazine alters responsiveness of rat cortical neurones to acetylcholine. Can J Physiol Pharmacol 58:531–535

    Google Scholar 

  • Kafoe WF, De Ridder JJ, Leonard BE (1976) The effect of a tetracyclic antidepressant compound Org GB94 on the turnover of biogenic amines in rat brain. Biochem Pharmacol 25:2455–2460

    Google Scholar 

  • Kanof PD, Greengard P (1978) Brain histamine receptors as targets for antidepressant drugs. Nature 272:329–333

    Google Scholar 

  • Katz RJ, Schmaltz K (1980) Reduction in opiate activation after chronic electroconvulsive shock — possible role for endorphins in the behavioral effects of convulsive shock treatment. Neurosci Lett 19:85–88

    Google Scholar 

  • Kellar KJ, Cascio CS, Bergstrom DA, Butler JA, Iadarola P (1981a) Electroconvulsive shock and reserpine: effects on β-adrenergic receptors in rat brain. J Neurochem 37:830–836

    Google Scholar 

  • Kellar KJ, Cascio CS, Butler JA, Kurtzke RN (1981b) Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur J Pharmacol 69:515–518

    Google Scholar 

  • Keller HH, Burkard WP, Da Prada M (1980) Dopamine receptor blockade in rat brain after acute and subchronic treatment with tricyclic antidepressants. In: Cattabeni T, Racagni G, Spano PF, Costa E (eds) Long-term effects of neuroleptics. Raven Press, New York, pp 175–179

    Google Scholar 

  • Kendall DA, Stancel GM, Enna SJ (1981) Imipramine: effect of ovarian steroids on modifications in serotonin receptor binding. Science 211:1183–1185

    Google Scholar 

  • Kendall DA, Stancel GM, Enna SJ (1982) The influence of sex hormones on the antidepressant-induced alterations in neurotransmitter receptor binding. J Neurosci 2:354–360

    Google Scholar 

  • Kinnier WJ, Chuang DM, Costa E (1980) Down regulation of dihydroalprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine. Eur J Pharmacol 67:289–294

    Google Scholar 

  • Klysner R, Geisler A (1981) Effect of REM-sleep deprivation on beta-adrenergic receptors in rat brain. Acta Pharmacol Toxicol 49 (Suppl III):26

    Google Scholar 

  • Koide T, Matsushita H (1981) An enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment. Life Sci 28:1139–1145

    Google Scholar 

  • Korf J, Sebens JB, Postema F (1979) Cyclic AMP in the rat cerebral cortex after stimulation of the locus coeruleus: decrease by antidepressant drugs. Eur J Pharmacol 59:23–30

    Google Scholar 

  • Kostowski W (1975) Brain serotonergic and catecholaminergic system: facts and hypothesis. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology, vol 1. Spectrum, New York Toronto London Sydney, pp 38–64

    Google Scholar 

  • Kunos G (1980) Reciprocal changes in α-and β-adrenoceptor reactivity — myth or reality? TIPS 1:282–284

    Google Scholar 

  • Ladisch W, Steinhauff N, Matussek N (1969) Chronic administration of electrocon-vulsive shock and norepinephrine metabolism in the rat brain. Psychopharmacologia (Berlin) 15:296–304

    Google Scholar 

  • Laduron PM, Robbyns M, Schotte A (1982) 3H-desipramine and 3H-imipramine binding are not associated with noradrenaline and serotonin uptake in the brain. Eur J Pharmacol 78:491–493

    Google Scholar 

  • Langer SZ, Briley MS (1981) High-affinity 3H-imipramine binding: a new biological tool for studies in depression. TINS 4:28–31

    Google Scholar 

  • Langer SZ, Zarifian E, Briley M, Raisman R, Sechter D (1982) High-affinity 3H-imipramine binding: a new biological marker in depression. Pharmacopsychiatria 15:4–10

    Google Scholar 

  • Lapin TP, Oxenkrug KF (1969) Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect. Lancet I:132–136

    Google Scholar 

  • Lebrecht U, Nowak JZ (1980) Effect of single and repeated electroconvulsive shock on serotonergic system in rat brain. II. Behavioural studies. Neuropharmacology 19:1055–1061

    Google Scholar 

  • Lecrubier Y, Puech AJ, Jouvent R, Simon P, Widlocher D (1980) A beta-adrenergic stimulant salbutamol vs. clomipramine in depression: a controlled study. Br J Psychiatry 136:354–358

    Google Scholar 

  • Lee T, Tang SW (1982) Reduced presynaptic dopamine receptor density after chronic antidepressant treatment in rats. Psychiatry Res 7:111–119

    Google Scholar 

  • Leonard BE (1982) On the mode of action of mianserin. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 301–319)

    Google Scholar 

  • Lucki I, Frazer A (1982) Prevention of the serotonin syndrome in rats by repeated administration of monoamine oxidase inhibitors but not tricyclic antidepressants. Psychopharmacology (Berlin) 77:205–211

    Google Scholar 

  • Maayani S, Hough LB, Weinstein H, Green JP (1982) Response of the histamine H2-receptor in brain to antidepressant drugs. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 31, pp 133–147

    Google Scholar 

  • MacNeil DA, Gower M (1982) Do antidepressants induce dopamine autoreceptor subsensitivity? Nature 298:302

    Google Scholar 

  • Maggi A, U'Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    Google Scholar 

  • Maître L, Staehelin M, Bein HJ (1971) Blockade of noradrenaline uptake by 34276-Ba, a new antidepressant drug. Biochem Pharmacol 20:2169–2186

    Google Scholar 

  • Maj J (1981) Serotoninergic mechanisms of antidepressant drugs. Pharmacopsychiatria 14:35–39

    Google Scholar 

  • Maj J (1982) Atypical antidepressant drugs — psychopharmacological profile and mechanism of action. Pharmacopsychiatria 15:26–30

    Google Scholar 

  • Maj J, Mogilnicka E, Klimek V (1977) Dopaminergic stimulation enhances the utilization of noradrenaline in the central nervous system. J Pharm Pharmacol 29:569–570

    Google Scholar 

  • Maj J, Lewandowska A, Rawłów A (1979a) Central antiserotonin action of amitriptyline. Pharmakopsychiatr Neuropsychopharmakol 12:281–285

    Google Scholar 

  • Maj J, Mogilnicka E, Klimek V (1979b) The effect of repeated administration of antidepressant drugs on the responsiveness of rats to catecholamine agonists. J Neural Transm 44:221–235

    Google Scholar 

  • Maj J, Mogilnicka E, Kordecka A (1979c) Chronic treatment with antidepressant drugs: potentiation of apomorphine-induced aggressive behaviour in rats. Neurosci Lett 13:337–341

    Google Scholar 

  • Maj J, Mogilnicka E, Kordecka-Magiera A (1980) Effects of chronic administration of antidepressant drugs on aggressive behavior induced by clonidine in mice. Pharmacol Biochem Behav 13:153–154

    Google Scholar 

  • Maj J, Mogilnicka E, Klimek V, Kordecka-Magiera A (1981) Chronic treatment with antidepressants: potentiation of clonidine-induced aggression in mice via noradrenergic mechanism. J Neural Transm 52:189–197

    Google Scholar 

  • Maj J, Melzacka M, Mogilnicka E, Daniel W (1982a) Different pharmacokinetic and pharmacological effects following acute and chronic treatment with imipramine. J Neural Transm 54:219–228

    Google Scholar 

  • Maj J, Rogóż Z, Skuza G (1982b) Fluvoxamine, a new antidepressant drug, fails to show antiserotonin activity. Eur J Pharmacol 81:287–292

    Google Scholar 

  • Maj J, Rogóż Z, Skuza G, Sowińska H (1982c) Effects of chronic treatment with antidepressants on aggressiveness induced by clonidine in mice. J Neural Transm 55:19–25

    Google Scholar 

  • Maj J, Górka Z, Melzacka M, Rawłów A, Pilc A (1983a) Chronic treatment with imipramine: further functional evidence for the enhanced noradrenergic transmission in flexor reflex activity. Naunyn Schmiedebergs Arch Pharmacol 322:256–260

    Google Scholar 

  • Maj J, Rogóż Z, Skuza G (1983b) (+)-Oxaprotiline but not (−)-oxaprotiline given chronically potentiates the aggressive behaviour induced by clonidine. J Pharm Pharmacol 35:180–181

    Google Scholar 

  • Maj J, Rogóż Z, Skuza G, Sowińska H (1983c) Reserpine-induced locomotor stimulation in mice chronically treated with typical and atypical antidepressants. Eur J Pharmacol 87:469–474

    Google Scholar 

  • Maj J, Rogóż Z, Skuza G, Sowińska H (1984) Repeated treatment with antidepressant drugs potentiates the locomotor response to (+)-amphetamine. J Pharm Pharmacol 36:127–130

    Google Scholar 

  • Marco EJ, Meek JL (1979) The effects of antidepressants on serotonin turnover in discrete regions of rat brain. Naunyn Schmiedebergs Arch Pharmacol 306:75–79

    Google Scholar 

  • Massingham R, Dubocovich ML, Shepperson NB, Langer SZ (1981) In vivo selectivity of prazosin but not of WB4101 for postsynaptic alpha-1 adrenoceptors. J Pharmacol Exp Ther 217:467–474

    Google Scholar 

  • Matussek N (1966) Neurobiologie und depression. Med Monatsschr 20:109–112

    Google Scholar 

  • Matussek N, Ackenheil M, Hippius H, Müller F, Schröder H-T, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res 2:25–36

    Google Scholar 

  • Maxwell RA, White HL (1978) Tricyclic and monoamine oxidase inhibitor antidepressants: structure-activity relationships. In: Iversen LL, Iversen SD, Snyder SH (eds) Affective disorders: drug actions in animals and man. Plenum Press, New York London. (Handbook of psychopharmacology, vol 14, pp 83–188)

    Google Scholar 

  • McMillen BA, Warnack W, German DC, Shore PA (1980) Effects of chronic desipramine treatment on rat brain noradrenergic responses to α-adrenergic drugs. Eur J Pharmacol 61:239–246

    Google Scholar 

  • Meek J, Werdinius B (1970) Hydroxytryptamine turnover decreased by the antidepressant drug chlorimipramine. J Pharm Pharmacol 22:141–143

    Google Scholar 

  • Menkes DB, Aghajanian GK (1981) α1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. Eur J Pharmacol 74:27–35

    Google Scholar 

  • Menkes DB, Aghajanian GK, McCall RB (1980) Chronic antidepressant treatment enhances α-adrenergic and serotonergic responses in the facial nucleus. Life Sci 27:45–55

    Google Scholar 

  • Minneman KP, Dibner MD, Wolfe BB, Molinoff PB (1979) β 1-and β 2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science 204:866–868

    Google Scholar 

  • Mishra R, Sulser F (1978) Role of serotonin reuptake inhibition in the development of subsensitivity of the norepinephrine (NE) receptor-coupled adenylate cyclase system. Commun Psychopharmacol 2:365–370

    Google Scholar 

  • Mishra R, Janowsky A, Sulser F (1979) Subsensitivity of the norepinephrine receptor-coupled adenylate cyclase system in brain: effects of nisoxetine versus fluoxetine. Eur J Pharmacol 60:379–382

    Google Scholar 

  • Mishra R, Janowsky A, Sulser F (1980) Action of mianserin and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: subsensitivity without reduction in β-adrenergic receptor binding. Neuropharmacology 19:983–987

    Google Scholar 

  • Mishra R, Gillespie DD, Sulser F (1981a) Down-regulation of the norepinephrine (NE) receptor coupled adenylate cyclase system in brain by oxaprotiline. Eight International Congress of Pharmacology (IUPHAR), 19–24 July, Tokyo, Abstr 1284

    Google Scholar 

  • Mishra R, Leith NJ, Steranka L, Sulser F (1981b) The noradrenaline receptor coupled adenylate cyclase system in brain. Lack of modification by changes in the availability of serotonin. Naunyn Schmiedebergs Arch Pharmacol 316:218–224

    Google Scholar 

  • Mobley PL, Sulser F (1979) Norepinephrine stimulated cyclic AMP accumulation in rat limbic forebrain slices: partial mediation by a subpopulation of receptors with neither α nor β characteristics. Eur J Pharmacol 60:221–227

    Google Scholar 

  • Mobley PL, Sulser F (1981) Down-regulation of the central noradrenergic receptor system by antidepressant therapies: biochemical and clinical aspects. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral, and clinical perspectives. Raven Press, New York, pp 31–51

    Google Scholar 

  • Mobley PL, Sanders-Bush E, Smith HE, Sulser F (1979) Modification of the noradrenergic cyclic AMP generating system in the rat limbic forebrain by amphetamine: role of its hydroxylated metabolites. Naunyn Schmiedebergs Arch Pharmacol 306:267–273

    Google Scholar 

  • Mocchetti I, Brunello N, Racagni G (1982) Ontogenetic study of (3H)imipramine binding sites and serotonin uptake system: indication of possible interdependence. Eur J Pharmacol 83:151–152

    Google Scholar 

  • Modigh K (1973) Effect of chlorimipramine on the rate of tryptophan hydroxylation in the intact and transected spinal cord. J Pharm Pharmacol 25:926–928

    Google Scholar 

  • Modigh K (1976) Long-term effects of electroconvulsive shock therapy on synthesis, turnover and uptake of brain monoamines. Psychopharmacology (Berlin) 49:179–185

    Google Scholar 

  • Modigh K (1979) Long-lasting effects of ECT on monoaminergic mechanisms. In: Saletu B, Berner P, Hollister L (eds) Neuropsychopharmacology. Pergamon Press, Oxford, pp 11–20

    Google Scholar 

  • Mogilnicka E (1982) The effect of acute and repeated treatment with albutamol, a β-adrenoceptor agonist, on clonidine-induced hypoactivity in rats. J Neural Transm 53:117–126

    Google Scholar 

  • Mogilnicka E, Klimek V (1979) Mianserin, danitracen and amitriptyline withdrawal increases the behavioural responses of rats to L-5-HTP. J Pharm Pharmacol 31:704–705

    Google Scholar 

  • Mogilnicka E, Pilc A (1981) A rapid-eye-movement sleep deprivation inhibits the clonidine-induced sedation in the rats. Eur J Pharmacol 71:123–126

    Google Scholar 

  • Mogilnicka E, Arbilla S, Depoortere H, Langer SZ (1980) Rapid-eye-movement sleep deprivation decreases the density of 3H-dihydroalprenolol and 3H-imipramine binding sites in the rat cerebral cortex. Eur J Pharmacol 65:289–292

    Google Scholar 

  • Montigny C de (1980) Electroconvulsive shock treatment increases responsiveness of forebrain neurons to serotonin: a microiontophoretic study in the rat. Neurosci Abstr 6:453

    Google Scholar 

  • Montigny C de, Aghajanian GK (1978) Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202:1303–1306

    Google Scholar 

  • Montigny C de, Blier P, Caille G, Kouassi E (1981) Pre-and postsynaptic effects of zimelidine and norzimelidine on the serotoninergic system: single cell studies in the rat. Acta Psychiatr Scand 63 (Suppl 290):79–90

    Google Scholar 

  • Morpurgo C (1968) Aggressive behavior induced by large doses of 2-(2,6-dichlorphenyl-amino)-2-imidazoline hydrochloride (St 155) in mice. Eur J Pharmacol 3:374–378

    Google Scholar 

  • Nagy A (1977) Blood and brain concentrations of imipramine, clomipramine and their monomethylated metabolites after oral and intramuscular administration in rats. J Pharm Pharmacol 29:104–107

    Google Scholar 

  • Neal H, Bradley PB (1979) Electrocortical changes in the encephalé isolé cat following chronic treatment with antidepressant drugs. Neuropharmacology 18:611–615

    Google Scholar 

  • Neff NH, Costa E (1967) Effect of tricyclic antidepressants and chlorpromazine on brain catecholamine synthesis. In: Garattini S, Dukes MNG (eds) Antidepressant drugs. Excerpta Medica, Amsterdam, pp 28–34

    Google Scholar 

  • Nielsen M (1975) The influence of desipramine and amitriptyline on the accumulation of (3H)noradrenaline and its two major metabolites formed from (3H)tyrosine in the rat brain. J Pharm Pharmacol 27:206–208

    Google Scholar 

  • Nielsen M, Braestrup C (1977a) Chronic treatment with desipramine caused a sustained decrease of 3,4-dihydroxyphenylglycol-sulphate and total 3-methoxy-4-hydroxyphenylglycol in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 300:87–92

    Google Scholar 

  • Nielsen M, Braestrup C (1977b) Desipramine and some other antidepressant drugs decrease the major norepinephrine metabolite 3,4-dihydroxy-phenylglycol-sulphate in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 300:93–99

    Google Scholar 

  • Nielsen M, Eplov L, Scheel-Krüger J (1975) The effect of amitriptyline, desipramine and imipramine on the in vivo brain synthesis of 3H-noradrenaline from 3H-L-dopa in the rat. Psychopharmacologia (Berlin) 41:249–254

    Google Scholar 

  • Nyback HV, Walters JR, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants. Effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32:302–312

    Google Scholar 

  • Ögren SO, Lundström J, Moore G (1981) Zimelidine pharmacology, pharmacokinetics and clinical response. In: Burows GD, Norman TR (eds) Psychotropic drugs, plasma concentration and clinical response. Dekker, New York Basel, pp 205–230

    Google Scholar 

  • Olianas M, Oliver AP, Neff NH (1982) Biochemical and electrophysiological studies on the mechanism of action of typical and atypical antidepressants on the H2-histamine receptor complex. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York (Advances in biochemical psychopharmacology, vol 31, pp 149–156)

    Google Scholar 

  • Olpe HR (1981) Differential effects of clomipramine and clorgyline on the sensitivity of cortical neurons to serotonin: effect of chronic treatment. Eur J Pharmacol 69:375–377

    Google Scholar 

  • Olpe HR, Schellenberg A (1980) Reduced sensitivity of neurons to noradrenaline after chronic treatment with antidepressant drugs. Eur J Pharmacol 63:7–13

    Google Scholar 

  • Olpe HR, Schellenberg A (1981) The sensitivity of cortical neurons to serotonin: effect of chronic treatment with antidepressants, serotonin-uptake inhibitors and monoamine-oxidase-blocking drugs. J Neural Transm 51:233–244

    Google Scholar 

  • Overall JE, Hollister LE, Pokorny AD, Casey JF, Katz G (1962) Drug therapy in depressions. Controlled evaluation of imipramine, isocarboxazide, dextroamphetamine-amobarbital, and placebo. Clin Pharmacol Ther 3:16–22

    Google Scholar 

  • Passarelli F, Scotti de Carolis A (1982) Effects of chronic treatment with imipramine on the behavioural and electroencephalographic modifications induced by clonidine in the rat. Neuropharmacology 21:591–593

    Google Scholar 

  • Paul SM, Crews FT (1980) Rapid desensitization of cerebral cortical β-adrenergic receptors induced by desmethylimipramine and phenoxybenzamine. Eur J Pharmacol 62:349–350

    Google Scholar 

  • Pawłowski L, Ruczyńska J, Wojtasik E (1979) An evidence for the central serotoninergic activity of viloxazone. Pol J Pharmacol Pharm 31:262–269

    Google Scholar 

  • Pawłowski L, Ruczyńska J, Górka Z (1981) Citalopram: a new potent inhibitor of serotonin (5-HT) uptake with central 5-HT-mimetic properties. Psychopharmacology (Berlin) 74:161–165

    Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of (3H)serotonin, (3H)lysergic acid diethylamine and (3H)spiroperidol. Mol Pharmacol 16:687–699

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980a) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210:88–90

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980b) Regulation of serotonin2 (5-HT2) receptors labeled with (3H)spiroperidol by chronic treatment with the antidepressant amitriptyline. J Pharmacol Exp Ther 215:582–587

    Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct central serotonin receptors with different physiological functions. Science 212:827–829

    Google Scholar 

  • Persson SA (1979) Effects of chlorimipramine on the synthesis and metabolism of dopamine in the rat striatum. Psychopharmacology (Berlin) 66:13–17

    Google Scholar 

  • Pijnenburg AJJ, Honig WMM, van der Heyden, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    Google Scholar 

  • Pilc A, Vetulani J (1982a) Attenuation by chronic imipramine treatment of (3H)clonidine to cortical membranes and of clonidine-induced hypothermia: the influence of central chemosympathectomy. Brain Res 238:499–504

    Google Scholar 

  • Pilc A, Vetulani J (1982b) Depression by chronic electroconvulsive treatment of clonidine hypothermia and (3H)clonidine binding to rat cortical membranes. Eur J Pharmacol 80:109–113

    Google Scholar 

  • Pinder RM, Brogden RN, Speight TM, Avery GS (1977) Viloxazine: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 13:401–421

    Google Scholar 

  • Post RM, Kopin J, Goodwin FK (1974) The effects of cocaine on depressed patients. Am J Psychiatry 131:511–517

    Google Scholar 

  • Potter WZ (1983) Neurotransmission. In: Angst J (ed) Dahlem Konferenzen. On the origins of depression: current concepts and approaches. Springer, Berlin Heidelberg New York Tokyo, pp 447–457

    Google Scholar 

  • Praag HM van (1978) Amine hypotheses of affective disorders. In: Iversen LL, Iversen SD, Snyder SH (eds) Biology of mood and antianxiety drugs. Plenum Press, New York (Handbook of psychopharmacology, vol 13, pp 187–297

    Google Scholar 

  • Przegaliński E, Baran L, Kedrek G (1980) The central action of salbutamol, a potential antidepressant drug. Pol J Pharmacol Pharm 32:485–493

    Google Scholar 

  • Przegaliński E, Kordecka-Magiera A, Mogilnicka E, Maj J (1981) Chronic treatment with some atypical antidepressants increases the brain level of 3-methoxy-4-hydroxyphenylglycol (MHPG) in rats. Psychopharmacology (Berlin) 74:187–190

    Google Scholar 

  • Przegaliński E, Baran L, Siwanowicz J (1983) The effect of chronic treatment with antidepressant drugs on salbutamol-induced hypoactivity in rats. Psychopharmacology (Berlin) 80:355–359

    Google Scholar 

  • Pugsley TA, Lippmann W (1979) Effect of acute and chronic treatment with tandamine, a new heterocyclic antidepressant, on biogenic amine metabolism and related activities. Naunyn Schmiedebergs Arch Pharmacol 308:239–247

    Google Scholar 

  • Racagni G, Mocchetti I, De Angelis L, Baraldi M, Cuomo E (1982) In vivo effects of typical and atypical antidepressants on brain noradrenergic system: behavioural correlations. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York (Advances in biochemical psychopharmacology, vol 31, pp 185–197)

    Google Scholar 

  • Radulovacki M, Micovic N (1982) Effects of REM sleep deprivation and desipramine on β-adrenergic binding sites in rat brain. Brain Res 235:393–396

    Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology (Berlin) 53:309–314

    Google Scholar 

  • Randrup A, Munkvad I, Fog R, Gerlach J, Molander L, Kjellberg B, Scheel-Krüger J (1975) Mania, depression and brain dopamine. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology, vol 2. Spectrum, New York, pp 206–248

    Google Scholar 

  • Rehavi M, Ramot O, Yavetz B, Sokolovsky M (1980) Amitriptyline: long-term treatment elevates α-adrenergic and muscarinic receptor binding in mouse brain. Brain Res 194:443–453

    Google Scholar 

  • Reisine T, Soubrie P (1982) Loss of rat cerebral cortical opiate receptors following chronic desipramine treatment. Eur J Pharmacol 77:39–44

    Google Scholar 

  • Reisine TD, U'Prichard DC, Wiech NL, Ursillo RC, Yamamura HI (1980) Effects of combined administration of amphetamine and iprindole on brain adrenergic receptors. Brain Res 188:587–592

    Google Scholar 

  • Reisine TD, Johnson R, Wiech N, Ursillo RC, Yamamura HI (1982) Rapid desensitization of central beta-receptors and up-regulation of alpha2-receptors following antidepressant treatment. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York (Advances in biochemical psychopharmacology, vol 31, pp 63–67)

    Google Scholar 

  • Reite ML (1983) Animal models. In: Angst J (ed) Dahlem Konferenzen. On the origins of depression: current concepts and approaches. Springer, Berlin Heidelberg New York Tokyo, pp 405–423

    Google Scholar 

  • Richelson E (1978) Histamine H1 receptor-mediated guoanosine 3′,5′-monophosphate formation by cultured mouse neuroblastoma cells. Science 201:69–71

    Google Scholar 

  • Riezen H van, Pinder RM, Nickolson VJ, Hobbelen P, Zayed I, van Der Veen F (1981) Mianserin: a really different anti-depressant. In: Goldberg ME (ed) Pharmacological and biochemical properties of drug substances. American Pharmaceutical Association, Washington, pp 1–38

    Google Scholar 

  • Robinson DS, Campbell IC, Walker M, Statham NJ, Lovenberg W, Murphy DL (1979) Effects of chronic monoamine oxidase inhibitor treatment on biogenic amine metabolism in rat brain. Neuropharmacology 18:771–776

    Google Scholar 

  • Roffman M, Kling MA, Cassens G, Orsulak PJ, Reigle TG, Schildkraut JJ (1977) The effects of acute and chronic administration of tricyclic antidepressants on MHPG-SO4 in rat brain. Commun Psychopharmacol 1:195–206

    Google Scholar 

  • Rosenblatt JE, Pert CB, Tallman JF, Pert A, Bunney WE Jr (1979) The effect of imipramine and lithium on α-and β-receptor binding in rat brain. Brain Res 160:186–191

    Google Scholar 

  • Rosloff BN, Davis JM (1974) Effects of iprindole on norepinephrine turnover and transport. Psychopharmacologia (Berlin) 40:53–64

    Google Scholar 

  • Rosloff BN, Davis JM (1978) Decrease in brain NE turnover after chronic DMI treatment; no effect with iprindole. Psychopharmacology (Berlin) 56:335–341

    Google Scholar 

  • Ross SB, Renyi AL (1969) Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur J Pharmacol 7:270–277

    Google Scholar 

  • Ross SB, Hall H, Reney AL, Westerlund D (1981) Effects of zimelidine on serotoninergic and noradrenergic neurons after repeated administration in the rat. Psychopharmacology (Berlin) 72:219–225

    Google Scholar 

  • Sanghvi J, Gershon S (1975) Effect of acute and chronic iprindole on serotonin turnover in mouse brain. Biochem Pharmacol 24:2103–2104

    Google Scholar 

  • Sarai K, Frazer A, Brunswick D, Mendels J (1978) Desmethylimipramine-induced decrease in β-adrenergic receptor binding in rat cerebral cortex. Biochem Pharmacol 27:2179–2181

    Google Scholar 

  • Savage DD, Frazer A, Mendels J (1979) Differential effects of monoamine oxidase inhibitors and serotonin reuptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur J Pharmacol 58:87–88

    Google Scholar 

  • Savage DD, Mendels J, Frazer A (1980a) Decrease in (3H)-serotonin binding in rat brain produced by the repeated administration of either monoamine oxidase inhibitors or centrally acting serotonin agonists. Neuropharmacology 19:1063–1070

    Google Scholar 

  • Savage DD, Mendels J, Frazer A (1980b) Monoamine oxidase inhibitors and serotonin uptake inhibitors: differential effects on (3H) serotonin binding sites in rat brain. J Pharmacol Exp Ther 212:259–263

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Google Scholar 

  • Schildkraut JJ, Winokur A, Draskoczy PR, Hensle JH (1971) Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline. A possible explanation for the delay in onset of clinical antidepressant effects. Am J Psychiatry 127:1032–1039

    Google Scholar 

  • Schildkraut JJ, Roffman M, Orsulak PJ, Schatzberg AF, Kling MA, Reigle TG (1976) Effects of short-and long-term administration of tricyclic antidepressants and lithium on norepinephrine turnover in brain. Pharmakopsychiatr Neuropsychopharmakol 9:193–202

    Google Scholar 

  • Schmidt MJ, Thornberry JF (1977) Norepinephrine stimulated cyclic AMP accumulation in brain slices in vitro after serotonin depletion or chronic administration of selective amine uptake inhibitors. Arch Int Pharmacodyn Ther 229:42–51

    Google Scholar 

  • Schultz J (1976) Psychoactive drug effects on a system which generates cyclic AMP in brain. Nature 261:417–418

    Google Scholar 

  • Schultz JE, Siggins GR, Schocker FW, Türck M, Bloom FE (1981) Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta-receptor binding in rat cerebellum: electrophysiological and biochemical comparison. J Pharmacol Exp Ther 216:28–38

    Google Scholar 

  • Schwartz JC, Garberg M, Quach TT (1981) Histamine receptors in brain as a targets for tricyclic antidepressants. TIPS 2:122–125

    Google Scholar 

  • Schweitzer JW, Schwartz R, Friedhoff AJ (1979) Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J Neurochem 33:377–379

    Google Scholar 

  • Scuvée-Moreau JJ, Dresse AE (1979) Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat. Eur J Pharmacol 57:219–225

    Google Scholar 

  • Scuvée-Moreau JJ, Svensson TH (1982) Sensitivity in vivo of central α2-and opiate receptors after chronic treatment with various antidepressants. J Neural Transm 54:51–63

    Google Scholar 

  • Segal M, Bloom F (1974) The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res 72:79–97

    Google Scholar 

  • Segawa T, Mizuta T, Nomura Y (1979) Modifications of central 5-hydroxytryptamine binding sites in synaptic membranes from rat brain after long-term administration of tricyclic antidepressants. Eur J Pharmacol 57:75–83

    Google Scholar 

  • Sellinger-Barnette MM, Mendels J, Frazer A (1980) The effect of psychoactive drugs on beta-adrenergic receptor binding sites in rat brain. Neuropharmacology 19:447–454

    Google Scholar 

  • Serra G, Argiolas A, Klimek V, Fadda F, Gessa GL (1979) Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci 25:415–424

    Google Scholar 

  • Serra G, Argiolas A, Fadda F, Melis MR, Gessa GL (1981) Repeated electroconvulsive shock antagonizes apomorphine-induced EEG changes and sedation. Psychopharmacology (Berlin) 73:194–196

    Google Scholar 

  • Sethy VH, Harris DW (1981) Effect of norepinephrine uptake blocker on β-adrenergic receptors of the rat cerebral cortex. Eur J Pharmacol 75:53–56

    Google Scholar 

  • Sherman A (1979) Time course of the effects of antidepressants on serotonin in rat neocortex. Commun Psychopharmacol 3:1–5

    Google Scholar 

  • Shields PJ (1972) Effects of electroconvulsive shock on the metabolism of 5-hydroxy-tryptamine in rat brain. J Pharm Pharmacol 24:919–921

    Google Scholar 

  • Siggins GR, Schultz JE (1979) Chronic treatment with lithium or desipramine alters discharge frequency and norepinephrine responsiveness of cerebellar Purkinje cells. Proc Natl Acad Sci USA 76:5987–5991

    Google Scholar 

  • Silvestrini B (1975) Pharmacological profile of trazodone. In: Antonelli F (ed) Therapy in psychosomatic medicine, International college of psychosomatic medicine. Pozzi, Roma, pp 7–20

    Google Scholar 

  • Simon P, Lecrubier Y, Jouvent R, Puech AJ, Allilaire JF, Widlocher D (1978) Experimental and clinical evidence of the antidepressant effect of a beta-adrenergic stimulant. Psychol Med 8:335–338

    Google Scholar 

  • Smith CB, Garcia-Sevilla JA, Hollingsworth PJ (1981) α2-Adrenoceptors in rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Res 210:413–418

    Google Scholar 

  • Snyder SH (1980) Tricyclic antidepressant drug interaction with histamine and α-adrenergic receptors. Pharmakopsychiatr Neuropsychopharmakol 13:62–67

    Google Scholar 

  • Snyder SH, Peroutka SJ (1982) A possible role of serotonin receptors in antidepressant drug action. Pharmacopsychiatria 15:131–134

    Google Scholar 

  • Snyder SH, Yamamura HI (1977) Antidepressants and the muscarinic acetylcholine receptors. Arch Gen Psychiatry 34:236–239

    Google Scholar 

  • Spyraki C, Fibiger HC (1980) Functional evidence for subsensitivity of noradrenergic alpha2-receptors after chronic desipramine treatment. Life Sci 27:1863–1867

    Google Scholar 

  • Spyraki C, Fibiger HC (1981) Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. Eur J Pharmacol 74:195–206

    Google Scholar 

  • Squires RF (1978) Monoamine oxidase inhibitors: animal pharmacology. In: Iversen LL, Iversen SD, Snyder SH (eds) Affective disorders: drug actions in animals and man. Plenum Press, New York London (Handbook of psychopharmacology, vol 14, pp 1–58)

    Google Scholar 

  • Stolz JF, Marsden CA (1982) Withdrawal from chronic treatment with metergoline, dl-propanolol and amitriptyline enhances serotonin receptor mediated behaviour in the rat. Eur J Pharmacol 79:17–22

    Google Scholar 

  • Sugrue MF (1980a) The inability of chronic mianserin to block central α2-adrenoceptors. Eur J Pharmacol 68:377–380

    Google Scholar 

  • Sugrue MF (1980b) Changes in rat brain monoamine turnover following chronic antidepressant administration. Life Sci 26:423–429

    Google Scholar 

  • Sugrue MF (1981a) Chronic antidepressant administration and adaptive changes in central monoaminergic systems. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemical, behavioral, and clinical perspectives. Raven Press, New York, pp 13–30

    Google Scholar 

  • Sugrue MF (1981b) Current concepts on the mechanisms of action of antidepressant drugs. Pharmacol Ther 13:219–247

    Google Scholar 

  • Sugrue MF (1981c) Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxyphenylethy-leneglycol sulphate content. Life Sci 28:377–384

    Google Scholar 

  • Sugrue MF (1982a) A study of the sensitivity of rat brain alpha2-adrenoceptors during chronic antidepressant treatments. Naunyn Schmiedebergs Arch Pharmacol 320:90–96

    Google Scholar 

  • Sugrue MF (1982b) Effect of chronic antidepressants on rat brain α2-adrenoceptor sensitivity. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York (Advances in biochemical psychopharmacology, vol 31, pp 55–62)

    Google Scholar 

  • Sugrue MF (1982c) A study of the effects of chronic salbutamol on rat brain monoaminergic systems. J Pharm Pharmacol 34:446–449

    Google Scholar 

  • Sulser F (1979) New perspectives on the mode of action of antidepressant drugs. TIPS 1:92–94

    Google Scholar 

  • Sulser F, Vetulani J, Mobley PL (1978) Mode of action of antidepressant drugs. Biochem Pharmacol 27:257–261

    Google Scholar 

  • Svensson TH (1978) Attenuated feed-back inhibition of brain serotonin synthesis following chronic administration of imipramine. Naunyn Schmiedebergs Arch Pharmacol 302:115–118

    Google Scholar 

  • Svensson TH, Usdin T (1978) Feedback inhibition of brain noradrenaline neurons by tricyclic antidepresants: α-receptor mediation. Science 202:1089–1091

    Google Scholar 

  • Svensson TH, Usdin T (1979) Alpha-adrenoceptor mediated inhibition of brain nor-adrenergic neurons after acute and chronic treatment with tricyclic antidepressants. In: Usdin E, Kopin J, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon Press, New York, pp 672–674

    Google Scholar 

  • Swann AC, Grant SJ, Hattox SE, Maas JW (1981) Adrenoceptor regulation in rat brain: chronic effects of α1-or α2-receptor blockers. Eur J Pharmacol 73:301–305

    Google Scholar 

  • Tagliamonte A, Tagliamonte P, Di Chiara G, Gessa R, Gessa GL (1972) Increase in brain tryptophan by electroconvulsive shock in rats. J Neurochem 19:1509–1512

    Google Scholar 

  • Tang SW, Seeman P (1980) Effect of antidepressant drugs on serotonergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 311:255–261

    Google Scholar 

  • Tang SW, Helmeste DM, Stancer HC (1978) The effect of acute and chronic desipramine and amitriptyline on rat brain total 3-methoxy-4-hydroxyphenylglycol. Naunyn Schmiedebergs Arch Pharmacol 305:207–211

    Google Scholar 

  • Tang SW, Helmeste DM, Stancer HC (1979) Interaction of antidepressants with clonidine on rat brain total 3-methoxy-4-hydroxyphenylglycol. Can J Physiol Pharmacol 57:435–437

    Google Scholar 

  • Tang SW, Seeman P, Kwan S (1981) Differential effect of chronic desipramine and amitriptyline treatment on rat brain adrenergic and serotonergic receptors. Psychiatry Res 4:129–138

    Google Scholar 

  • Taylor DP, Allen LE, Ashworth EM, Becker JA, Hyslop DK, Riblet LA (1981) Treatment with trazodone plus phenoxybenzamine accelerates development of decreased type 2 serotonin binding in rat cortex. Neuropharmacology 20:513–516

    Google Scholar 

  • Tran VT, Chang RSL, Snyder SH (1978) Histamine H1 receptors identified in mammalian brain membranes with (3H) mepyramine. Proc Natl Acad Sci USA 75:6290–6294

    Google Scholar 

  • Tran VT, Lebovitz R, Toll L, Snyder SH (1981) (3H) Doxepin interactions with histamine H1-receptors and other sites in guinea pig and rat brain homogenates. Eur J Pharmacol 70:501–509

    Google Scholar 

  • Tufik S (1981) Changes of response to dopaminergic drugs in rats submitted to REM-sleep deprivation. Psychopharmacology (Berlin) 72:257–260

    Google Scholar 

  • Van Wijk M, Meisch JJ, Korf J (1977) Metabolism of 5-hydroxytryptamine and levels of tricyclic antidepressant drugs in rat brain after acute and chronic treatment. Psychopharmacology (Berlin) 55:217–223

    Google Scholar 

  • Vetulani J (1982) Adaptive changes as the mode of action of antidepressant treatments. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York (Advances in biocheical psychopharmacology, vol 31, pp 27–36)

    Google Scholar 

  • Vetulani J, Pilc A (1982) Postdecapitation convulsions in the rat measured with an Animex motility meter: relation to central α-adrenoceptors. Eur J Pharmacol 85:269–275

    Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257:495–496

    Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976a) A possible common mechanism of action of antidepressant treatments. Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 293:109–114

    Google Scholar 

  • Vetulani J, Stawarz RJ, Sulser F (1976b) Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the limbic forebrain of the rat: adaptation to persistent changes in the availability of norepinephrine (NE). J Neurochem 27:661–666

    Google Scholar 

  • Vetulani J, Lebrecht U, Pilc A (1981) Enhancement of responsiveness of the central serotonergic system and serotonin-2 receptor density in rat frontal cortex by electroconvulsive treatment. Eur J Pharmacol 76:81–85

    Google Scholar 

  • Vogel GW, Vogel F, McAbee RS, Thrumond AJ (1980) Improvement of depression by REM sleep deprivation. Arch Gen Psychiatry 37:247–253

    Google Scholar 

  • Von Voigtlander PF, Losey EG (1978) 6-Hydroxydopa depletes both brain epinephrine and norepoinephrine: interactions with antidepresants. Life Sci 23:147–150

    Google Scholar 

  • Von Voigtlander PF, Triezenberg HJ, Losey EG (1978) Interactions between clonidine and antidepressant drugs: a method for identifying antidepressant-like agents. Neuropharmacology 17:375–381

    Google Scholar 

  • Waldmeier PC (1981) Stimulation of central serotonin turnover by β-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 317:115–119

    Google Scholar 

  • Waldmeier PC (1982) Effects of antidepressant drugs on dopamine uptake and metabolism. J Pharm Pharmacol 34:391–394

    Google Scholar 

  • Waldmeier PC, Baumann PA, Hauser K, Maitre L, Storni A (1982) Oxaprotiline, a noradrenaline uptake inhibitor with an active and an inactive enantiomer. Biochem Pharmacol 31:2169–2176

    Google Scholar 

  • Wang RY, Aghajanian GK (1980) Enhanced sensitivity of amygdaloid neurons to serotonin and norepinephrine after chronic antidepressant treatment. Commun Psychopharmacol 4:83–90

    Google Scholar 

  • Wehr TA, Wirz-Justice A (1982) Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmacopsychiatria 15:31–39

    Google Scholar 

  • Welch J, Kim H, Fallon S, Liebman J (1982) Do antidepressants induce dopamine autoreceptor subsensitivity? Nature 298:301–302

    Google Scholar 

  • Wielosz M (1981) Increased sensitivity to dopaminergic agonists after repeated electroconvulsive shock (ecs) in rats. Neuropharmacology 20:941–945

    Google Scholar 

  • Wirz-Justice A, Krauchi K, Lichtsteiner M, Feer H (1978) Is it possible to modify serotonin receptor sensitivity? Life Sci 23:1249–1254

    Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of β-adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207:446–457

    Google Scholar 

  • Wong DT, Horng JS, Bymaster FP (1975) dl-N-Methyl-3-(0-methoxyphenoxy)-3-phenylpropylamine hydrochloride, Lilly 94939, a potent inhibitor for uptake of norepinephrine into rat brain synaptosomes and heart. Life Sci 17:755–760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Maj, J., Przegalinski, E., Mogilnicka, E. (1984). Hypotheses concerning the mechanism of action of antidepressant drugs. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 100. Reviews of Physiology, Biochemistry and Pharmacology, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540133275_1

Download citation

  • DOI: https://doi.org/10.1007/3540133275_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13327-8

  • Online ISBN: 978-3-540-38851-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics