Skip to main content

Recent developments in studies of the supplementary motor area of primates

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 103

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 103))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adie WJ, Critchley M (1927) Forced grasping and groping. Brain 50:142–170

    Google Scholar 

  • Alexander MP, Schmidt MA (1980) The aphasia syndrome of stroke in the left anterior cerebral artery territory. Arch Neurol 37:97–100

    PubMed  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983a) Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res Rev 5:219–235

    Article  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983b) Distribution of cerebellar terminations and their relation to afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5:237–265

    Article  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983c) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebello-thalamic pathway of the monkey. Brain Res Rev 5:267–297

    Article  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983d) Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brain stem projections of the dorsal column nuclei. Brain Res Rev 5:299–322

    Article  Google Scholar 

  • Bailey P (1933) In: von Bonin G (1944) Architecture of the precentral motor cortex and some adjacent areas, fig. 36, p 63 of the Precentral Motor Cortex (PC Bucy ed). The University of Illinois Press, Urbana

    Google Scholar 

  • Bancaud J, Talairach J, Geier S, Bonis A, Trottier S, Manrique M (1976) Manifestations comportementales induites par la stimulation électrique du gyrus cingulaire antérieur chez l'homme. Rev Neurol (Paris) 132:705–724

    PubMed  Google Scholar 

  • Bancaud J, Chauvel P, Buser P (1985) Participation of SMA to speech. In: The cerebral events in voluntary movement; the supplementary motor and premotor areas. Proceedings of the Ringberg Symposium. Exp Brain Res 58:A14

    Google Scholar 

  • Biber MP, Kneisley LW, Lavail JH (1978) Cortical neurons projecting to the cervical and lumbar enlargements of the spinal cord in young and adult Rhesus monkeys. Exp Neurol 59:492–508

    Article  PubMed  Google Scholar 

  • Boschert J, Hnik RF, Deecke L (1983) Finger movement versus toe movement-related potentials: further evidence for supplementary motor area (SMA) participation prior to voluntary action. Exp Brain Res 52:73–80

    Article  PubMed  Google Scholar 

  • Bouisset S, Zattara M (1981) A sequence of postural movements precedes voluntary movement. Neurosci Lett 22:263–270

    Article  Google Scholar 

  • Bowker RM, Murray EA, Coulter JD (1979) Intracortical and thalamic connections of the supplementary sensory and supplementary motor areas in the monkey. Abstr Soc Neurosci 5:704

    Google Scholar 

  • Brinkman C (1973) Split-brain monkeys: cerebral control of contralateral and ipsilateral arm, hand and finger movements. MD thesis, Erasmus University of Rotterdam, Rotterdam, pp 112–163

    Google Scholar 

  • Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey's performance of a bimanual coordination task. Neurosci Lett 27:267–270

    Article  PubMed  Google Scholar 

  • Brinkman C (1982) Supplementary motor area (SMA) and premotor area (PM) of the monkey's brain: distribution of degeneration in the spinal cord after unilateral lesions. Neurosci Lett (Suppl) 8:36

    Google Scholar 

  • Brinkman C (1983) Effects of bilateral supplementary motor area lesions in the monkey. Neurosci Lett (Suppl) 15:23

    Google Scholar 

  • Brinkman C (1984) Supplementary motor area of the monkey's cerebral cortex: short-and longterm deficits after unilateral ablation, and the effects of subsequent callosal section. J Neurosci 4:918–929

    PubMed  Google Scholar 

  • Brinkman C, Porter R (1976) Activities of cells in the supplementary motor cortex of the monkey during performance of a learned motor task. Proc Aust Physiol Pharmacol Soc 7:88

    Google Scholar 

  • Brinkman C, Porter R (1979) Supplementary motor area in the monkey. Activity of neurons during performance of a learned motor task. J Neurophysiol 42:681–709

    PubMed  Google Scholar 

  • Brinkman C, Porter R (1983) Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 393–420

    Google Scholar 

  • Brodmann K (1904/1905) Beiträge zur histologische Lokalisation der Grosshirnrinde. IIIte Mitteilung: Die Rindenfelder der niederen Affen. J Psychol Neurol 4:177–226

    Google Scholar 

  • Brodmann K (1925) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, 2nd edn. Barth, Leipzig, p 334

    Google Scholar 

  • Brooks VB (1983) Study of brain function by local reversible cooling. Rev Physiol Pharmacol 95:1–109

    Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficits caused by regional depletion of dopamine in prefrontal cortex of Rhesus monkey. Science 205:929–932

    PubMed  Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, Cambridge, p 360

    Google Scholar 

  • Chauvel P (1976) Les stimulations de l'aire motrice supplémentaire chez l'homme. Remarques concernant son organisation fonctionnelle. Thesis, University of Rennes, Rennes

    Google Scholar 

  • Cheema S, Rustioni A, Whitsel BL (1983) Corticospinal projections from pericentral and supplementary cortices in macaques as revealed by anterograde transport of horseradish peroxidase. Neurosci Lett (Suppl) 14:62

    Google Scholar 

  • Cheney PD, Fetz EE (1985) Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophysiol 53:786–804

    PubMed  Google Scholar 

  • Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J Neurophysiol 53:805–820

    PubMed  Google Scholar 

  • Chusid JG, de Guttierez-Mahoney CG, Marguls-Lavergne MP (1954) Speech disturbances in association with parasagittal frontal lesion. J Neurosurg 11:193–204

    PubMed  Google Scholar 

  • Conrad B, Benecke R, Goehmann M (1983) Premovement silent period in fast movement initiation. Exp Brain Res 51:310–313

    Article  PubMed  Google Scholar 

  • Cordo PJ, Nashner LM (1982) Properties of postural adjustments associated with rapid arm movements. J Neurophysiol 47:287–302

    PubMed  Google Scholar 

  • Coxe WS, Landau WM (1965) Observations upon the effect of supplementary motor cortex ablation in the monkey. Brain 88:763–772

    PubMed  Google Scholar 

  • Damasio AR, Van Hoesen GW (1980) Structure and function of the supplementary motor area. Neurology 30:359

    Google Scholar 

  • Deecke L, Kornhuber HH (1978) An electrical sign of participation of the mesial 'supplementary’ motor cortex in human voluntary finger movement. Brain Res 159:473–476

    Article  PubMed  Google Scholar 

  • Deecke L, Scheid P, Kornhuber H (1969) Distribution of readiness potentials, premotion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp Brain Res 7:158–168

    Article  PubMed  Google Scholar 

  • Deecke L, Boschert J, Weinberg H, Brickett P (1983) Magnetic fields of the human brain (Bereitschaftsmagnetfeld) preceding voluntary foot and toe movements. Exp Brain Res 52:81–86

    Article  PubMed  Google Scholar 

  • Delacour J, Libouban S, McNeil M (1972) Premotor cortex and instrumental behavior in monkeys. Physiol Behav 8:299–305

    Article  PubMed  Google Scholar 

  • Denny-Brown D (1966) The cerebral control of movements. Liverpool University Press, Liverpool

    Google Scholar 

  • Denny-Brown D (1967) The fundamental organization of motor behavior. In: Yahr MD, Purpura DP (eds) Neurophysiological basis of normal and abnormal motor activities, Raven, Hewlett, pp 415–444

    Google Scholar 

  • De Vito J, Smith OA (1959) Projections from the mesial frontal cortex (supplementary motor area) to the cerebral hemispheres and brainstem of the Macaca mulatta. J Comp Neurol 111:261–278

    Article  PubMed  Google Scholar 

  • Dhanarajan P, Rüegg DG, Wiesendanger M (1977) An anatomical investigation of the corticopontine projection in the primate (Saimiri sciureus). The projection from motor and somatosensory areas. Neuroscience 2:913–922

    Article  Google Scholar 

  • Eccles JC (1982) The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr 231:423–441

    Article  PubMed  Google Scholar 

  • Elner AM, Gabibov GA (1977) Possibility of recovery of the postural synergy after removal of the brain tumour. Agressologie 18:69–73

    PubMed  Google Scholar 

  • Fetz EE (1981) Neuronal activity associated with conditioned limb movements. In: Towe AL, Luschei ES (eds) Motor coordination, vol 5. Handbook of behavioral neurobiology. Plenum, New York, pp 493–526

    Google Scholar 

  • Foit A, Larsen B, Hattori S, Skinhoj E, Lassen NA (1980) Cortical activation during somatosensory stimulation and voluntary movement in man: a regional cerebral blood flow study. Electroencephalogr Clin Neurophysiol 50:426–436

    Article  PubMed  Google Scholar 

  • Fox PT, Fox JM, Raichle ME, Burde RM (1985) The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomography study. J Neurophysiol 54:348–369

    PubMed  Google Scholar 

  • Freund HJ, Hummelsheim H (1984) Premotor cortex in man: evidence for innervation of proximal limb muscles. Exp Brain Res 53:479–482

    Article  PubMed  Google Scholar 

  • Fulton JF (1949) Physiology of the nervous system, 3rd ed. Oxford University Press, New York, p 667

    Google Scholar 

  • Gallouin F, Albe-Fessard D (1973) Stéréotaxie chez le macaque éveillé: étude des cortex somatiques, moteurs et moteur supplémentaire. J Physiol (Paris) 67:274A

    Google Scholar 

  • Gelmers HJ (1983) Non-paralytic motor disturbances and speech disorders: the role of the supplementary motor area. J Neurol Neurosurg Psychiatry 46:1052–1054

    PubMed  Google Scholar 

  • Gemba H, Sasaki K (1984) Distribution of potentials preceding visually initiated and self-paced hand movements in various cortical areas of the monkey. Brain Res 306:207–214

    Article  PubMed  Google Scholar 

  • Gilden L, Vaughan HG, Costa LD (1966) Summated human EEG potentials with voluntary movement. Electroencephalogr Clin Neurophysiol 20:433–438

    Article  PubMed  Google Scholar 

  • Goldberg G, Mayer NH, Toglia JU (1981) Medial frontal cortex infarction and the alien hand sign. Arch Neurol 38:683–686

    PubMed  Google Scholar 

  • Goldman PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging Rhesus monkey. Neuroscience 10:177–187

    Article  Google Scholar 

  • Green JR, Angevine JB, White JC, Edes AD, Smith RD (1980) Significance of the supplementary motor area in partial seizures and in cerebral localization. Neurosurgery 6:66–75

    PubMed  Google Scholar 

  • Grünewald G, Grünewald-Zuberbier E (1983) Cerebral potentials during voluntary ramp movements in aiming tasks: In: Gaillard AWG, Ritter W (eds) Tutorials in event-related potentials: endogenous components. North-Holland, Amsterdam, pp 311–327

    Google Scholar 

  • Grünewald-Zuberbier E, Grünewald G (1978) Goal-directed movement potentials of human cerebral cortex. Exp Brain Res 33:135–138

    Article  PubMed  Google Scholar 

  • Guidetti B (1957) Désordres de la parole associés à des lésions de la surface interhémisphérique frontale supérieure. Rev Neurol (Paris) 97:121–131

    PubMed  Google Scholar 

  • Gurfinkel VS, Kots JM, Paltsev FI, Feldman AG (1971) In: Gelfand IM, Gurfinkel VS, Fomin SSV, Tsetlin ML (eds) Models of the structural functional organization of certain biological systems. MIT Press, Cambridge, pp 382–395

    Google Scholar 

  • Haider M, Groll-Knapp E, Ganglberger JA (1981) Event-related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:125–197

    PubMed  Google Scholar 

  • Halsband U (1983) Higher disturbances of movement in Macaca fascicularis following discrete neocortical ablations. Neurosci Lett (Suppl) 14:154

    Google Scholar 

  • Halsband U, Passingham R (1982) The role of premotor and parietal cortex in the direction of action. Brain Res 240:368–372

    Article  PubMed  Google Scholar 

  • Hamada I (1981) Correlation of monkey pyramidal tract neuron activity to movement velocity in rapid wrist flexion movement. Brain Res 230:384–389

    Article  PubMed  Google Scholar 

  • Hess WR (1943) Teleokinetische und ereismatische Kräftesysteme in der Biomotorik. Helv Physiol Acta 1:C62–C63 (English translation in: Akert K (1981) Biological order and brain organization. Selected works of WR Hess. Springer, Berlin Heidelberg New York, pp 265–268)

    Google Scholar 

  • Hess WR (1956) Hypothalamus and thalamus. Documentary pictures. Thieme, Stuttgart

    Google Scholar 

  • Hines M (1936) The anterior border of the monkey's (Macaca mulatta) motor cortex and the production of spasticity. Am J Physiol 116:76

    Google Scholar 

  • Hugon M, Massion J, Wiesendanger M (1982) Anticipatory postural changes induced by active unloading and comparison with passive unloading in man. Pfluegers Arch Ges Physiol 393:292–296

    Article  Google Scholar 

  • Humphrey DR (1979) On the cortical control of visually directed reaching: contributions by nonprecentral motor areas. In: Talbot RE, Humphrey DR (eds) Posture and movement. Raven, New York, pp 51–112

    Google Scholar 

  • Humphrey DR, Gold R, Reed DJ (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    Article  PubMed  Google Scholar 

  • Ingvar DH (1977) Functional responses of the human brain studied by regional cerebral blood flow techniques. Acta Clin Belg 32:68–83

    PubMed  Google Scholar 

  • Ingvar DH, Philipson L (1977) Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Ann Neurol 2:230–237

    Article  PubMed  Google Scholar 

  • Ingvar DH, Schwartz MS (1974) Blood flow patterns induced in the dominant hemisphere by speech and reading. Brain 97:273–288

    PubMed  Google Scholar 

  • Jacobsen CF (1934) Influence of motor and premotor area lesions upon the retention of skilled movements in monkeys and chimpanzees. In: Localization of function in the cerebral cortex. An investigation of the most recent advances. Res Publ Assoc Res Nerv Ment Dis 13:225–247

    Google Scholar 

  • Jonas S (1981) The supplementary motor region and speech emission. J Communication Disorders 14:349–373

    Article  Google Scholar 

  • Jones EG (1981) Functional subdivision and synaptic organization of the mammalian thalamus. Int Rev Physiol 25:173–245

    PubMed  Google Scholar 

  • Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80

    Article  PubMed  Google Scholar 

  • Jones EG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–348

    Article  PubMed  Google Scholar 

  • Jürgens U (1984) The efferent and afferent connections of the supplementary motor area. Brain Res 300:63–81

    Article  PubMed  Google Scholar 

  • Jung R (1982) Postural support of goal-directed movements: the preparation and guidance of voluntary action in man. Acta Biol Acad Sci Hung 33:201–213

    PubMed  Google Scholar 

  • Jung R, Hufschmidt A, Moschallski W (1982) Langsame Hirnpotentiale beim Schreiben: die Wechselwirkung von Schreibhand und Sprachdominanz bei Rechtshändern. Arch Psychiatr Nervenkr 232:305–324

    Article  PubMed  Google Scholar 

  • Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements. Relations in area 5 and comparison with motor cortex. Exp Brain Res 51:247–260

    Article  PubMed  Google Scholar 

  • Kalil K (1978) Neuroanatomical organization of the primate motor system: afferent and efferent connections of the ventral thalamic nuclei. In: Otto D (ed) Multi-disciplinary perspectives in event related brain potential research. US Government Printing Office, Washington

    Google Scholar 

  • Kievit H, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the Rhesus monkey. Exp Brain Res 29:299–322

    Article  PubMed  Google Scholar 

  • Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–289

    Article  PubMed  Google Scholar 

  • Kirzinger A, Jürgens U (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Res 233:299–315

    Article  PubMed  Google Scholar 

  • Környey E (1975) Aphasie trancorticale et écholalie: le problème de l'initiative de la parole. Rev Neurol 131:347–363

    PubMed  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen by Willkärbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfluegers Arch Ges Physiol 284:1–17

    Article  Google Scholar 

  • Krieg WJS (1963) Connections of the cerebral cortex. Brain Books, Evanston, p 472

    Google Scholar 

  • Kubota K (1985) Prefrontal and premotor contributions to the voluntary movement in learned tasks. In: The cerebral events in voluntary movement: the supplementary motor and premotor ares. Proceedings of the Ringberg Symposium. Exp Brain Res 58:A8

    Google Scholar 

  • Kubota K, Hamada I (1979) Preparatory activity of monkey pyramidal tract neurons related to quick movement onset during visual tracking performance. Brain Res 168:435–439

    Article  PubMed  Google Scholar 

  • Kubota K, Iwamoto T, Suzuki H (1974) Visuokinetic activities of primate prefrontal neurons during delayed-response performance. J Neurophysiol 37:1197–11212

    PubMed  Google Scholar 

  • Künzle H (1978a) An autoradiographic analysis of the efferent connections from ‘premotor’ and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Künzle H (1978b) Cortico-cortical efferents of primary motor and somatosensory regions of the cerebral cortex in Macaca fascicularis. Neuroscience 3:25–39

    Article  Google Scholar 

  • Kurata K, Tanji J (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys: II. Responses to movement triggering vs. non-triggering sensory signals. J Neurophysiol 53:142–152

    PubMed  Google Scholar 

  • Kutas M, Donchin E (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res 202:95–115

    Article  PubMed  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of descending pathways. In: Brooks VB (ed) Handbook of physiology, sect 1, vol 2; motor control. Am Physiol Soc, Washington, pp 597–666

    Google Scholar 

  • Lang W, Lang M, Kornhuber A, Deecke L, Kornhuber H (1983) Human cerebral potentials and visuomotor learning. Pfluegers Arch Ges Physiol 399:342–344

    Article  Google Scholar 

  • Laplane D, Orgogozo JM, Meininger V, Degos JD (1976) Paralysie faciale avec dissociation automatico-volontaire inverse par lésion frontale. Son origine corticale, ses relations aves l'AMS. Rev Neurol (Paris) 132:725–735

    PubMed  Google Scholar 

  • Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM (1977) Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 34:301–314

    Article  PubMed  Google Scholar 

  • Lassen NA, Ingvar DH (1972) Radioisotopic assessment of regional cerebral blood flow. Prog Nucl Med 1:376–409

    PubMed  Google Scholar 

  • Lemon RN, Hanby JA, Porter R (1976) Relationship between the activity of precentral neurones during active and passive movements in conscious monkeys. Proc R Soc Lond (Biol) 194:341–373

    Google Scholar 

  • Libet B, Alberts WW, Wright EW, Lewis M, Feinstein B (1975) Cortical representation of evoked potentials relative to conscious sensory responses, and of somatosensory qualities in man. In: Kornhuber HH (ed) The somatosensory system. Thieme, Stuttgart, pp 291–308

    Google Scholar 

  • Libet B, Wright EW, Gleason CA (1982) Readiness potentials preceding unrestricted 'spontaneous’ vs. pre-planned voluntary acts. Electroencephalogr Clin Neurophysiol 54:322–335

    Article  PubMed  Google Scholar 

  • Libet B, Gleason CA, Wright EW, Pearl DK (1983a) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106:623–642

    PubMed  Google Scholar 

  • Libet B, Wright EW, Gleason CA (1983b) Preparation — or intention — to act, in relation to pre-event potentials recorded at the vertex. Electroencephalogr Clin Neurophysiol 56:367–372

    Article  PubMed  Google Scholar 

  • Macpherson JM, Marangoz C, Miles TS, Wiesendanger M (1982a) Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp Brain Res 45:410–416

    Article  PubMed  Google Scholar 

  • Macpherson J, Wiesendanger M, Marangoz C, Miles TS (1982b) Corticospinal neurones of the supplementary motor area of monkeys. A single unit study. Exp Brain Res 48:81–88

    Article  PubMed  Google Scholar 

  • Mark RF, Sperry RW (1968) Bimanual coordination in monkeys. Exp Neurol 21:92–104

    Article  PubMed  Google Scholar 

  • Masdeu JC, Schoene WC, Funkenstein H (1978) Aphasia following infarction of the left supplementary motor area. Neurology 28:1220–1223

    PubMed  Google Scholar 

  • Massion J (1984) Postural changes accompanying voluntary movements. Normal and pathological aspects. Human Neurobiol 2:261–267

    Google Scholar 

  • Matsumura M, Kubota K (1979) Cortical projection to the hand-arm motor area from post arcuate area in macaque monkey: a histological study of the retrograde transport of horseradish peroxidase. Neurosci Lett 11:241–246

    Article  PubMed  Google Scholar 

  • Matsunami K, Hamada I (1981) Characteristics of the ipsilateral movement-related neuron in the motor cortex of the monkey. Brain Res 204:29–42

    Article  PubMed  Google Scholar 

  • Matsunami K, Hamada I (1983) Activities of single precentral neurones of the monkey during different tasks of forelimb movements. Jpn J Physiol 33:309–322

    PubMed  Google Scholar 

  • Menuhin Y (1980) In: Daniels R (ed) Conversations with Menuhin. St Martin's, New York

    Google Scholar 

  • Moll L, Kuypers HGJM (1977) Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198:317–319

    PubMed  Google Scholar 

  • Muakassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177:176–182

    Article  PubMed  Google Scholar 

  • Murray E, Coulter JD (1981) Organization of corticospinal neurones in the monkey. J Comp Neurol 195:339–365

    Article  PubMed  Google Scholar 

  • Olesen J (1971) Contralateral focal increase of cerebral blood flow in man during arm work. Brain 94:635–646

    PubMed  Google Scholar 

  • Olszewski J (1952) The thalamus of Macaca mulatta. An atlas for use with the sterotaxic instrument. Karger, Basel

    Google Scholar 

  • Orgogozo JM, Larsen B (1979) Activation of the supplementary motor area during voluntary movements in man suggests it works as a supramotor area. Science 206:847–850

    PubMed  Google Scholar 

  • Palmer C, Schmidt EM, McIntosh JS (1981) Corticospinal and corticorubral projection from the supplementary motor area in the monkey. Brain Res 209:305–314

    Article  PubMed  Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam MM (1981) Efferent connections of the cingulate gyrus in the Rhesus monkey. Exp Brain Res 42:319–330

    Article  PubMed  Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, Boston

    Google Scholar 

  • Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex. Arch Neurol Psychiatry 66:289–317

    Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the Rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  Google Scholar 

  • Pinto-Hamuy T (1956) Retention and performance of “skilled movements” after cortical ablations in monkeys. Johns Hopkins Hosp Bull 98:417–444

    Google Scholar 

  • Porter R, Lewis MM (1975) Relationship of neuronal discharges in the precentral gyrus of monkeys to the performance of arm movements. Brain Res 98:21–36

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Matelli M, Pavesi G (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 106:655–673

    PubMed  Google Scholar 

  • Roland PE, Larsen B, Lassen NA, Skinhoj E (1980a) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43:118–136

    PubMed  Google Scholar 

  • Roland PE, Skinhoj E, Lassen NA, Larsen B (1980b) Differential cortical areas in man in organization of voluntary movements in extrapersonal space. J Neurophysiol 43:137–150

    PubMed  Google Scholar 

  • Roland PE, Meyer E, Shibasaki T, Yamamoto YL, Thompson CJ (1982) Regional cerebral blood flow changes in cortex and basal ganglia during voluntary movements in normal human volunteers. J Neurophysiol 48:467–480

    PubMed  Google Scholar 

  • Rolls ET (1983) The initiation of movements. In: Massion J, Paillard J. Schultz W, Wiesendanger M (eds) Neural coding of motor performance. Exp Brain Res (Suppl) 7:77–113

    Google Scholar 

  • Rubens AB (1975) Aphasia with infarction in the territory of the anterior cerebral artery. Cortex II:239–250

    Google Scholar 

  • Russel WR, Young RR (1969) Missile wounds of the parasagittal Rolandic area. In: Locke S (ed) Modern neurology. Little, Brown, Boston, pp 289–302

    Google Scholar 

  • Sanes JN, Jennings VA (1984) Centrally programmed patterns of muscle activity in voluntary motor behavior of humans. Exp Brain Res 54:23–32

    Article  PubMed  Google Scholar 

  • Sanides F (1968) The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationship to insular, sensorimotor and prefrontal regions. Brain Res 8:97–124

    Article  PubMed  Google Scholar 

  • Schell GR, Strick P (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560

    PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1985) Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey. Exp Brain Res 58:208–211

    Article  PubMed  Google Scholar 

  • Schlag-Rey M, Schlag J (1984) Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol 51:1149–1174

    PubMed  Google Scholar 

  • Sessle BJ, Wiesendanger M (1982) Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis). J Physiol (Lond) 323:245–265

    PubMed  Google Scholar 

  • Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol 49:213–226

    Article  PubMed  Google Scholar 

  • Smith AM (1979) The activity of supplementary motor area neurons during a maintained precision grip. Brain Res 172:315–327

    Article  PubMed  Google Scholar 

  • Smith AM, Hepp-Reymond MC, Wyss UR (1975) Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Exp Brain Res 23:315–332

    Article  PubMed  Google Scholar 

  • Smith AM, Bourbonnais D, Blanchette G (1981) Interaction between forced grasping and a learned precision grip after ablation of the supplementary motor area. Brain Res 222:395–400

    Article  PubMed  Google Scholar 

  • Sutton D, Trachy RE, Lindeman RC (1981) Monkey vocalization: effects of supplementary motor damage. Soc Neurosci 7:240 (abstract)

    Google Scholar 

  • Sutton D, Trachy RE, Lindeman RC (1985) Discrimination phonation in macaques: effects of anterior mesial cortex damage. Exp Brain Res 59:410–413

    Article  PubMed  Google Scholar 

  • Talairach J, Bancaud J (1966) The supplementary motor area in man. Int J Neurol 5:330–347

    Google Scholar 

  • Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 39:1062–1068

    PubMed  Google Scholar 

  • Tanji J, Kurata K (1979) Neuronal activity in the cortical supplementary motor area related with distal and proximal forelimb movements. Neurosci Lett 12:201–206

    Article  PubMed  Google Scholar 

  • Tanji J, Kurata K (1981) Contrasting neuronal activity in the ipsilateral and contralateral supplementary motor areas in relation to a movement of monkey's distal hindlimb. Brain Res 222:155–158

    Article  PubMed  Google Scholar 

  • Tanji J, Kurata K (1982) Comparison of movement-related activity in two cortical motor areas of primates. J Neurophysiol 48:633–653

    PubMed  Google Scholar 

  • Tanji J, Kurata K (1983) Functional organization of the supplementary motor area. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 421–431

    Google Scholar 

  • Tanji J, Kurata K (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalities. J Neurophysiol 53:129–141

    PubMed  Google Scholar 

  • Tanji J, Taniguchi K (1978) Does the supplementary motor area play a part in modifying motor cortex reflexes? J Physiol (Paris) 74:317–319

    Google Scholar 

  • Tanji J, Taniguchi K, Saga T (1980) Supplementary motor area: neuronal response to motor instructions. J Neurophysiol 43:60–68

    PubMed  Google Scholar 

  • Tasker RR, Gentili F, Sogabe K, Shanlin M, Hawrylyshyn P (1975) Decorticate spasticity: a re-examination using quantitative assessment in the primate. Can J Neurol Sci 2:303–313

    PubMed  Google Scholar 

  • Thorpe S, Rolls ET (1982) Activity of supplementary motor area neurones during visual discrimination and feeding. Neurosci Lett (Suppl) 10:481

    Google Scholar 

  • Toyoshima K, Sakai H (1982) Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J Hirnforsch 23:257–269

    PubMed  Google Scholar 

  • Travis AM (1955) Neurological deficiencies following supplementary motor area lesions in Macaca mulatta. Brain 78:257–269

    Google Scholar 

  • Travis AM, Woolsey CN (1956) Motor performance of monkeys after bilateral partial and total cerebral decortications. Am J Phys Med 35:273–310

    PubMed  Google Scholar 

  • Van Buren JM, Fedio P (1976) Functional representation on the medial aspect of the frontal lobes in man. J Neurosurg 44:275–289

    PubMed  Google Scholar 

  • Viviani P, Terzuolo C (1980) Space-time invariance in learned motor skills. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North Holland, Amsterdam, pp 525–533

    Google Scholar 

  • Vogt BA, Pandya DN (1978) Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the Rhesus monkey. J Comp Neurol 177:179–192

    Article  PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol (Leipzig) 25:279–439

    Google Scholar 

  • von Bonin G (1944) Architecture of the precentral motor cortex and some adjacent areas. In: Bucy IC (ed) The precentral motor cortex. University of Illinois Press, Urbana, pp 7–82

    Google Scholar 

  • von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana (Illinois monographs in medical sciences, vol 5), p 163

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Grosshirnrinde des erwachsenen Menschen. Springer, Berlin, 810 pp

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

  • Wiesendanger M (1981a) Organization of secondary motor areas of cerebral cortex. In: Brooks (ed) Handbook of physiology, the nervous system II, motor control. Am Physiol Soc, Washington, pp 1121–1147

    Google Scholar 

  • Wiesendanger M (1981b) The pyramidal tract, its structure and function. In: Towe AL, Luschei ES (eds) Handbook of behavioral neurobiology, vol 5. Plenum, New York

    Google Scholar 

  • Wiesendanger M, Wiesendanger R (1984) The supplementary motor area in the light of recent investigations. Exp Brain Res Suppl 9:382–392

    Google Scholar 

  • Wiesendanger M, Séguin JJ, Künzle H (1973) The supplementary motor area — a control system for posture? In: Stein RB, Pearson KC, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, pp 331–346

    Google Scholar 

  • Wiesendanger M, Rüegg DG, Lucier GE (1975) Why transcortical reflexes? Can J Neurol Sci 2:295–301

    PubMed  Google Scholar 

  • Wiesendanger M, Hummelsheim H, Bianchetti M (1985a) Sensory input to the motor fields of the agranular frontal cortex: a comparison of the precentral, supplementary motor, and premotor cortex. Beh Brain Res (in press)

    Google Scholar 

  • Wiesendanger M, Hummelsheim H, Macpherson J (1985b) Microelectrophysiology of the supplementary motor area. In: The cerebral events in voluntary movement: the supplementary motor and premotor areas. Proceedings of the Ringberg Symposium. Exp Brain Res 58:A2

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985a) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (Macaca fascicularis). Exp Brain Res 59:91–104

    PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985b) Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with the lectin wheat germ agglutinin conjugated to the marker horseradish peroxidase. Exp Brain Res 59:105–117

    PubMed  Google Scholar 

  • Wise SP, Tanji J (1981) Supplementary and precentral motor cortex: contrast in responsiveness to peripheral input in the hindlimb area of the unanaesthetized monkey. J Comp Neurol 195:433–442

    Article  PubMed  Google Scholar 

  • Woolsey CN, Settlage PH, Meyer DR, Spencer W, Pinto-Hamuy TP, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264

    PubMed  Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this chapter

Cite this chapter

Wiesendanger, M. (1986). Recent developments in studies of the supplementary motor area of primates. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 103. Reviews of Physiology, Biochemistry and Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540153330_1

Download citation

  • DOI: https://doi.org/10.1007/3540153330_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15333-7

  • Online ISBN: 978-3-540-39420-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics