Skip to main content

Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 251

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a class of hazardous organic contaminants that are widely distributed in nature, and many of them are potentially toxic to humans and other living organisms. Biodegradation is the major route of detoxification and removal of PAHs from the environment. Aerobic biodegradation of PAHs has been the subject of extensive research; however, reports on anaerobic biodegradation of PAHs are so far limited. Microbial degradation of PAHs under anaerobic conditions is difficult because of the slow growth rate of anaerobes and low energy yield in the metabolic processes. Despite the limitations, some anaerobic bacteria degrade PAHs under nitrate-reducing, sulfate-reducing, iron-reducing, and methanogenic conditions. Anaerobic biodegradation, though relatively slow, is a significant process of natural attenuation of PAHs from the impacted anoxic environments such as sediments, subsurface soils, and aquifers. This review is intended to provide comprehensive details on microbial degradation of PAHs under various reducing conditions, to describe the degradation mechanisms, and to identify the areas that should receive due attention in further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ΔG°′:

Standard Gibbs free energy change

1,2,3,4-THNA:

1,2,3,4-Tetrahydro-2-naphthoic acid

1-MN:

1-Methylnaphthalene

1-NA:

1-Naphthoic acid

2-DMNA:

2-Dimethylnaphthalene

2-MN:

2-Methylnaphthalene

2-NA:

2-Naphthoic acid

5,6,7,8-THNA:

5,6,7,8-Tetrahydro-2-naphthoic acid

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BaP:

Benzo(a)pyrene

Bcr:

Benzoyl-CoA reductase

BESA:

Bromoethane sulfonic acid

Bns:

Beta-oxidation of naphthyl-2-methylsuccinate

Bss:

Benzylsuccinate synthase

BTEX:

Benzene, toluene, ethylbenzene, and xylene

CoA:

Coenzyme A

DO:

Dissolved oxygen

E0′:

Standard reduction potential

FBR:

Fluidized bed reactor

GC:

Gas chromatography

H2O2:

Hydrogen peroxide

HH-2-NA:

Hexahydro-2-naphthoic acid

HMW:

High molecular weight

kDa:

Kilodalton

LC:

Liquid chromatography

LC-ESI-MS-MS:

Liquid chromatography electrospray ionization tandem mass spectrometry

LiP:

Lignin peroxidase

LMW:

Low molecular weight

logKOW:

Octanol-water partition coefficient

MGP:

Manufactured gas plant sites

MNA:

Methylnaphthoic acid

MnP:

Manganese-dependent peroxidase

MS:

Mass spectrometry

Ncr:

Naphthoyl-CoA reductase

NMeS:

Naphthyl-2-methylenesuccinic acid

Nms:

2-Napthylmethylsuccinate synthase

NMS:

Naphthyl-2-methylsuccinic acid

NRB:

Nitrate-reducing bacteria

OYE:

Old yellow enzyme

PAHs:

Polycyclic aromatic hydrocarbons

POP:

Persistent organic pollutants

PpcA:

Phenylphosphate carboxylase

Q-TOF-MS:

Quadrupole time-of-flight mass spectrometry

rRNA:

Ribosomal RNA

SOM:

Soil organic matter

SRB:

Sulfate-reducing bacteria

TCA:

Tricarboxylic acid

TEA:

Terminal electron acceptor

THNA:

Tetrahydronaphthoic acid

TOC:

Total organic carbon

T-RFLP:

Terminal restriction fragment length polymorphism

UbiD:

3-Polyprenyl-4-hydroxybenzoate decarboxylase

US EPA:

United States Environmental Protection Agency

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Google Scholar 

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  Google Scholar 

  • Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Sci Total Environ 407:2461–2473

    CAS  Google Scholar 

  • Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32

    Google Scholar 

  • Agarry SE, Owabor CN (2011) Anaerobic bioremediation of marine sediment artificially contaminated with anthracene and naphthalene. Environ Technol 32:1375–1381

    CAS  Google Scholar 

  • Aitken CM, Jones DM, Larter S (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291

    CAS  Google Scholar 

  • Akunna JC, Bizeau C, Moletta R (1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Res 27:1303–1312

    Google Scholar 

  • Al-Bashir B, Cseh T, Leduc R, Samson R (1990) Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl Microbiol Biotechnol 34:414–419

    CAS  Google Scholar 

  • Alejandro A-G, Ramon R-M, Silvia M (2013) Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15:77–92

    Google Scholar 

  • Allamandola L, Tielens A, Barker J (1989) Interstellar polycyclic aromatic hydrocarbons - the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys J Suppl Ser 71:733–775

    CAS  Google Scholar 

  • Ambrosoli R, Petruzzelli L, Minati JL, Marsan FA (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60:1231–1236

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Biorem J 3:121–135

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ Sci Technol 34:2261–2266

    CAS  Google Scholar 

  • Andersson JT, Achten C (2015) Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyc Aromat Compd 35:330–354

    CAS  Google Scholar 

  • Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333

    CAS  Google Scholar 

  • Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858

    CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation – an overview. Crit Rev Plant Sci 24:109–122

    CAS  Google Scholar 

  • Azuma H, Toyota M, Asakawa Y, Kawano S (1996) Naphthalene – a constituent of Magnolia flowers. Phytochemistry 42:999–1004

    Google Scholar 

  • Bach Q-D, Kim S-J, Choi S-C, Oh Y-S (2005) Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. J Microbiol 43:319–324

    CAS  Google Scholar 

  • Bandowe BA, Meusel H (2017) Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - a review. Sci Total Environ 581-582:237–257

    CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    CAS  Google Scholar 

  • Bauer JE, Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl Environ Microbiol 50:81–90

    CAS  Google Scholar 

  • Bedessem ME, Swoboda-Colberg NG, Colberg PJ (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152:213–218

    CAS  Google Scholar 

  • Beller HR, Spormann AM (1997) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676

    CAS  Google Scholar 

  • Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81:124–133

    CAS  Google Scholar 

  • Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011a) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125–1137

    CAS  Google Scholar 

  • Bergmann FD, Selesi D, Meckenstock RU (2011b) Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 193:241–250

    CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668

    CAS  Google Scholar 

  • Blumer M (1976) Polycyclic aromatic compounds in nature. Sci Am 234:34–45

    CAS  Google Scholar 

  • Blumer M, Youngblood WW (1975) Polycyclic aromatic hydrocarbons in soils and recent sediments. Science 188:53–55

    CAS  Google Scholar 

  • Boll M (2005) Dearomatizing benzene ring reductases. J Mol Microbiol Biotechnol 10:132–142

    CAS  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme a reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism: ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234:921–933

    CAS  Google Scholar 

  • Boll ES, Christensen JH, Holm PE (2008) Quantification and source identification of polycyclic aromatic hydrocarbons in sediment, soil, and water spinach from Hanoi, Vietnam. J Environ Monit 10:261–269

    CAS  Google Scholar 

  • Borneff J, Selenka F, Kunte H, Maximos A (1968) Experimental studies on the formation of polycyclic aromatic hydrocarbons in plants. Environ Res 2:22–29

    CAS  Google Scholar 

  • Breese K, Boll M, Alt-Morbe J, Schagger H, Fuchs G (1998) Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. Eur J Biochem 256:148–154

    CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    CAS  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    CAS  Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65:529–533

    CAS  Google Scholar 

  • Cabrerizo A, Galbán-Malagón C, Del Vento S, Dachs J (2014) Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere. Glob Biogeochem Cycles 28:1424–1436

    CAS  Google Scholar 

  • Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220

    CAS  Google Scholar 

  • Callaghan AV (2013) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515

    CAS  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883

    CAS  Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33:725–749

    CAS  Google Scholar 

  • Cappenberg TE (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie Van Leeuwenhoek 40:285–295

    CAS  Google Scholar 

  • Cea-Barcia G, Carrère H, Steyer JP, Patureau D (2013) Evidence for PAH removal coupled to the first steps of anaerobic digestion in sewage sludge. Int J Chem Eng 2013:1–6. https://doi.org/10.1155/2013/450542

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. In: Rosenberg E (ed) Microorganisms to combat pollution. Springer, Dordrecht, pp 227–244. https://doi.org/10.1007/978-94-011-1672-5_16

    Chapter  Google Scholar 

  • Cerniglia C, Sutherland J (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58

    CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. Microbiology 116:485–494

    CAS  Google Scholar 

  • Chang W, Jones TN, Holoman TRP (2001) Anaerobic polycyclic aromatic hydrocarbon(PAH)-degrading enrichment cultures under methanogenic conditions. In: Sixth international in situ and on site bioremediation symposium, pp 205–209

    Google Scholar 

  • Chang B, Shiung L, Yuan S (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724

    CAS  Google Scholar 

  • Chang B, Chang S, Yuan S (2003) Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv Environ Res 7:623–628

    CAS  Google Scholar 

  • Chang W, Um Y, Hoffman B, Holoman TRP (2005) Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol Prog 21:682–688

    CAS  Google Scholar 

  • Chang W, Um Y, Holoman TRP (2006) Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnol Lett 28:425–430

    CAS  Google Scholar 

  • Chang B-V, Chang IT, Yuan SY (2008) Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol 80:145–149

    CAS  Google Scholar 

  • Christensen N, Batstone DJ, He Z, Angelidaki I, Schmidt J (2004) Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Sci Technol 50:237–244

    CAS  Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol 62:1099–1101

    CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593

    CAS  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039

    CAS  Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation – a new era. Res Microbiol 153:621–628

    CAS  Google Scholar 

  • Cohen M, Barlow MJ (2005) Polycyclic aromatic hydrocarbon emission bands in selected planetary nebulae: a study of the behaviour with gas phase C/O ratio. Mon Not R Astron Soc 362:1199–1207

    CAS  Google Scholar 

  • Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35:1663–1670

    CAS  Google Scholar 

  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    CAS  Google Scholar 

  • Davidova IA, Gieg LM, Duncan KE, Suflita JM (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 1:436–442

    CAS  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    CAS  Google Scholar 

  • Didonato RJ Jr et al (2010) Genome sequence of the deltaproteobacterial strain Naphs2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLoS One 5(11):e14072

    Google Scholar 

  • Dolfing J, Xu A, Gray ND, Larter SR, Head IM (2009) The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2:566–574

    CAS  Google Scholar 

  • Dou J, Liu X, Ding A (2009) Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions. J Hazard Mater 165:325–331

    CAS  Google Scholar 

  • Drew MC (1990) Sensing soil oxygen. Plant Cell Environ 13:681–693

    CAS  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    CAS  Google Scholar 

  • Eberlein C, Estelmann S, Seifert J, Von Bergen M, Müller M, Meckenstock RU, Boll M (2013a) Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 88:1032–1039

    CAS  Google Scholar 

  • Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU (2013b) ATP-dependent/−independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol 15:1832–1841

    CAS  Google Scholar 

  • Edwards E, Wills L, Reinhard M, Grbić-Galić D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 58:794–800

    CAS  Google Scholar 

  • Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS (1997) A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc Natl Acad Sci U S A 94:6484–6489

    CAS  Google Scholar 

  • Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69:275–284

    CAS  Google Scholar 

  • Estelmann S, Blank I, Feldmann A, Boll M (2015) Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 95:162–172

    CAS  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    CAS  Google Scholar 

  • Fernández P, Grimalt JO (2003) On the global distribution of persistent organic pollutants. Chimia 57:514–521

    Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    CAS  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    CAS  Google Scholar 

  • Folwell BD, McGenity TJ, Price A, Johnson RJ, Whitby C (2016) Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int Biodeterior Biodegrad 108:214–221

    CAS  Google Scholar 

  • Frey PA, Reed GH (2012) The ubiquity of iron. ACS Chem Biol 7:1477–1481

    CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 9:803–816

    CAS  Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420

    CAS  Google Scholar 

  • Gieg LM, Toth CR (2017) Signature metabolite analysis to determine in situ anaerobic hydrocarbon biodegradation. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils, and lipids, Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–30

    Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    CAS  Google Scholar 

  • Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    CAS  Google Scholar 

  • Grimmer G, Jacob J, Naujack K-W (1983) Profile of the polycyclic aromatic compounds from crude oils. Fresenius Z Anal Chem 314:29–36

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    CAS  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1998) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458

    CAS  Google Scholar 

  • Hayakawa K (2018) Oil spills and polycyclic aromatic hydrocarbons. In: Hayakawa K (ed) Polycyclic aromatic hydrocarbons: environmental behavior and toxicity in East Asia. Springer, Singapore, pp 213–223. https://doi.org/10.1007/978-981-10-6775-4_16

    Chapter  Google Scholar 

  • Hayes LA, Nevin KP, Lovley DR (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30:937–945

    CAS  Google Scholar 

  • Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2505–2514. https://doi.org/10.1007/978-3-540-77587-4_185

    Chapter  Google Scholar 

  • Himmelberg AM, Brüls T, Farmani Z, Weyrauch P, Barthel G, Schrader W, Meckenstock RU (2018) Anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture. Environ Microbiol 20:3589–3600

    CAS  Google Scholar 

  • Hong Y-W, Yuan D-X, Lin Q-M, Yang T-L (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    CAS  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1

    Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358

    CAS  Google Scholar 

  • Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57:233–243

    CAS  Google Scholar 

  • Jobelius C, Ruth B, Griebler C, Meckenstock RU, Hollender J, Reineke A, Frimmel FH, Zwiener C (2010) Metabolites indicate hot spots of biodegradation and biogeochemical gradients in a high-resolution monitoring well. Environ Sci Technol 45:474–481

    Google Scholar 

  • Johann H, Georg F (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  • Johnson K, Ghosh S (1998) Feasibility of anaerobic biodegradation of PAHs in dredged river sediments. Water Sci Technol 38:41–48

    CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    CAS  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22:719–722

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    CAS  Google Scholar 

  • Karavalakis G, Deves G, Fontaras G, Stournas S, Samaras Z, Bakeas E (2010) The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89:3876–3883

    CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    CAS  Google Scholar 

  • Kim K-H, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    CAS  Google Scholar 

  • Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Ecotoxicol Environ Saf 41:83–89

    CAS  Google Scholar 

  • Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78:488–496

    CAS  Google Scholar 

  • Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183A

    CAS  Google Scholar 

  • Kraft B, Tegetmeyer H, Sharma R, Klotz M, Ferdelman T, Hettich R, Geelhoed J, Strous M (2014) The environmental controls that govern the end product of bacterial nitrate respiration. Science 345:676–679

    CAS  Google Scholar 

  • Kukučka P, Lammel G, Dvorská A, Klánová J, Möller A, Fries E (2010) Contamination of Antarctic snow by polycyclic aromatic hydrocarbons dominated by combustion sources in the polar region. Environ Chem 7:504–513

    Google Scholar 

  • Kummel S et al (2015) Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol 91(3):fiv006

    Google Scholar 

  • Kung JW et al (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci U S A 106:17687–17692

    CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    CAS  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263

    CAS  Google Scholar 

  • Laflamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42:289–303

    CAS  Google Scholar 

  • Landrum P, Giesy J, Oris J, Allred P (1986) Photoinduced toxicity of polycyclic aromatic hydrocarbons to aquatic organisms. In: Vandermuelen J, Hrudey S (eds) Oil in freshwater: chemistry, biology, countermeasure technology. Pergamon Press, Elmsford, pp 304–318

    Google Scholar 

  • Langenhoff AAM, Zehnder AJB, Schraa G (1996) Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7:267–274

    CAS  Google Scholar 

  • Latimer J, Zheng J (2003) The sources, transport and fate of PAHs in the marine environment. In: Douben P (ed) PAHs: an ecotoxicological perspective. Wiley, West Sussex, pp 7–53

    Google Scholar 

  • Leduc R, Samson R, Al-Bashir B, Al-Hawari J, Cseh T (1992) Biotic and abiotic disappearance of four pah compounds from flooded soil under various redox conditions. Water Sci Technol 26:51–60

    CAS  Google Scholar 

  • Lei A, Wong Y, Tam N (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201

    CAS  Google Scholar 

  • Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y (2009) Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 407:5772–5779

    CAS  Google Scholar 

  • Li CH, Ye C, Wong YS, Tam NF (2011) Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry. J Hazard Mater 190:786–793

    CAS  Google Scholar 

  • Li C, Wong Y, Wang H, Tam N (2015) Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3. J Environ Sci 30:148–156

    CAS  Google Scholar 

  • Liang L, Song X, Kong J, Shen C, Huang T, Hu Z (2014) Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation 25:825–833

    CAS  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment – a review. Environ Forensic 6:109–131

    CAS  Google Scholar 

  • Lovley DR (2001) Anaerobes to the rescue. Science 293:1444–1446

    CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe (III) ligands. Nature 370:128

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC, Phillips E (1995) Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 61:953–958

    CAS  Google Scholar 

  • Lu X, Zhang T, Fang HH-P, Leung KM, Zhang G (2011) Biodegradation of naphthalene by enriched marine denitrifying bacteria. Int Biodeterior Biodegrad 65:204–211

    CAS  Google Scholar 

  • Lu X-Y, Li B, Zhang T, Fang HH (2012) Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol 104:51–58

    CAS  Google Scholar 

  • Lundstedt S et al (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36:475–485

    CAS  Google Scholar 

  • Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY (2014) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49:1723–1732

    CAS  Google Scholar 

  • Luo L, Lai X, Chen B, Lin L, Fang L, Tam NF, Luan T (2015) Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water. Sci Rep 5:12776

    CAS  Google Scholar 

  • Ma B, He Y, Chen H-H, Xu J-M, Rengel Z (2010) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut 158:855–861

    CAS  Google Scholar 

  • Ma C, Wang Y, Zhuang L, Huang D, Zhou S, Li F (2011) Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, Pseudomonas aeruginosa strain PAH-1. J Soils Sed 11:923–929

    CAS  Google Scholar 

  • MacRae JD, Hall KJ (1998) Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci Technol 38:177–185

    CAS  Google Scholar 

  • Majora DW, Mayfielda CI, Barkerb JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Groundwater 26:8–14

    Google Scholar 

  • Maliszewska-Kordybach B (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8:131–136

    CAS  Google Scholar 

  • Margulis L, Sagan D (1997) Microcosmos: four billion years of microbial evolution. University of California Press, New York

    Google Scholar 

  • Marozava S, Mouttaki H, Muller H, Abu Laban N, Probst AJ, Meckenstock RU (2018) Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation 29:23–39

    CAS  Google Scholar 

  • Martens CS, Val Klump J (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim Cosmochim Acta 48:1987–2004

    CAS  Google Scholar 

  • Martirani-Von Abercron S-M, Pacheco D, Benito-Santano P, Marín P, Marqués S (2016) Polycyclic aromatic hydrocarbon-induced changes in bacterial community structure under anoxic nitrate reducing conditions. Front Microbiol 7:1775

    Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    CAS  Google Scholar 

  • McNally DL, Mihelcic JR, Lueking DR (1998) Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ Sci Technol 32:2633–2639

    CAS  Google Scholar 

  • McNeely RN, Neimanis VP, Dwyer L (1979) Water quality sourcebook: a guide to water quality parameters. Waters Directorate, Water Quality Branch, Ottawa

    Google Scholar 

  • Means JC, Wood SG, Hassett JJ, Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14:1524–1528

    CAS  Google Scholar 

  • Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414

    CAS  Google Scholar 

  • Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    CAS  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49:27–36

    CAS  Google Scholar 

  • Meckenstock RU et al (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    CAS  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl Environ Microbiol 54:1182–1187

    CAS  Google Scholar 

  • Mihelcic JR, Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl Environ Microbiol 54:1188–1198

    CAS  Google Scholar 

  • Miki S, Uno S, Ito K, Koyama J, Tanaka H (2014) Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan. Mar Pollut Bull 85:558–565

    CAS  Google Scholar 

  • Miller JS, Olejnik D (2001) Photolysis of polycyclic aromatic hydrocarbons in water. Water Res 35:233–243

    CAS  Google Scholar 

  • Miller MM, Wasik SP, Huang GL, Shiu WY, Mackay D (1985) Relationships between octanol-water partition coefficient and aqueous solubility. Environ Sci Technol 19:522–529

    CAS  Google Scholar 

  • Morgan P, Watkinson RJ (1992) Factors limiting the supply and efficiency of nutrient and oxygen supplements for the in situ biotreatment of contaminated soil and groundwater. Water Res 26:73–78

    CAS  Google Scholar 

  • Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774

    CAS  Google Scholar 

  • Mulas G, Malloci G, Joblin C, Toublanc D (2006) Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the red rectangle. A&A 446:537–549

    CAS  Google Scholar 

  • Müller JA, Schink B (2000) Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum. Arch Microbiol 173:288–295

    Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    CAS  Google Scholar 

  • Murphy T, Moller A, Brouwer H (1995) In situ treatment of Hamilton Harbour sediment. Aquat Ecosyst Health Manag 4:195–203

    Google Scholar 

  • Musat F et al (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441

    CAS  Google Scholar 

  • Nales M, Butler BJ, Edwards EA (1998) Anaerobic benzene biodegradation: a microcosm survey. Biorem J 2:125–144

    CAS  Google Scholar 

  • Neilson AN (2013) PAHs and related compounds: chemistry, vol 3. Springer, Berlin

    Google Scholar 

  • Neilson A, Allard A, Remberger M (1998) The handbook of environmental chemistry. Part J. PAHs and related compounds. Springer, Berlin

    Google Scholar 

  • Nestler FHM (1974) Characterization of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal Chem 46:46–53

    CAS  Google Scholar 

  • Nielsen T, Ramdahl T, Bjørseth A (1983) The fate of airborne polycyclic organic matter. Environ Health Perspect 47:103

    CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083

    CAS  Google Scholar 

  • Northrop D, Simpson O, Mott N (1956) Electronic properties of aromatic hydrocarbons I. Electrical conductivity. Proc R Soc Lond A 234:124–135

    CAS  Google Scholar 

  • O’Neil MJ (2013) The Merck index: an encyclopedia of chemicals, drugs, and biologicals. RSC Publishing, London

    Google Scholar 

  • Ohlenbusch G, Zwiener C, Meckenstock RU, Frimmel FH (2002) Identification and quantification of polar naphthalene derivatives in contaminated groundwater of a former gas plant site by liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr 967:201–207

    CAS  Google Scholar 

  • Ohura T (2007) Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons. Sci World J 7:372–380

    Google Scholar 

  • Oka AR, Phelps CD, Zhu X, Saber DL, Young L (2011) Dual biomarkers of anaerobic hydrocarbon degradation in historically contaminated groundwater. Environ Sci Technol 45:3407–3414

    CAS  Google Scholar 

  • Okere U, Semple K (2012) Biodegradation of PAHs in ‘pristine’soils from different climatic regions. J Bioremed Biodegr S1:006

    Google Scholar 

  • Oko BJ, Tao Y, Stuckey DC (2017) Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water. Biotechnol Biofuels 10:1–13

    Google Scholar 

  • Ou S, Zheng J, Zheng J, Richardson BJ, Lam PK (2004) Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China. Chemosphere 56:107–112

    CAS  Google Scholar 

  • Page DS, Brown JS, Boehm PD, Bence AE, Neff JM (2006) A hierarchical approach measures the aerial extent and concentration levels of PAH-contaminated shoreline sediments at historic industrial sites in Prince William Sound, Alaska. Mar Pollut Bull 52:367–379

    CAS  Google Scholar 

  • Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, Da Silva MLB, Alvarez PJJ, Suflita JM (2009) Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site. Microb Biotechnol 2:202–212

    CAS  Google Scholar 

  • Peeters E (2011) The PAH hypothesis after 25 years. Proc Int Astron Union 7:149–161

    Google Scholar 

  • Peng R-H et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    CAS  Google Scholar 

  • Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    CAS  Google Scholar 

  • Phelps CD, Battistelli J, Young L (2002) Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ. Environ Microbiol 4:532–537

    CAS  Google Scholar 

  • Phelps CD, Kazumi J, Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol Lett 145:433–437

    CAS  Google Scholar 

  • Planavsky NJ et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283

    CAS  Google Scholar 

  • Qin W, Zhu Y, Fan F, Wang Y, Liu X, Ding A, Dou J (2017) Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: degradation pathway and effects of limiting electron acceptors or carbon source. Biochem Eng J 121:131–138

    CAS  Google Scholar 

  • Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J (2018) Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49:258–268

    CAS  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36

    CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Sahraoui L-HA, Sancholle M (2000) Degradation of Benzo[a]Pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycyc Aromat Compd 21:311–329

    CAS  Google Scholar 

  • Ribeiro H et al (2018) Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation. Chemosphere 199:54–67

    CAS  Google Scholar 

  • Rochman CM, Manzano C, Hentschel BT, Simonich SLM, Hoh E (2013) Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ Sci Technol 47:13976–13984

    CAS  Google Scholar 

  • Rockne KJ, Strand SE (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol 32:3962–3967

    CAS  Google Scholar 

  • Rockne KJ, Strand SE (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 35:291–299

    CAS  Google Scholar 

  • Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66:1595–1601

    CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    CAS  Google Scholar 

  • Ross AB et al (2002) Measurement and prediction of the emission of pollutants from the combustion of coal and biomass in a fixed bed furnace. Fuel 81:571–582

    CAS  Google Scholar 

  • Rothermich MM, Hayes LA, Lovley DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36:4811–4817

    CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2004) Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N47. FEMS Microbiol Lett 240:99–104

    CAS  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352

    CAS  Google Scholar 

  • Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40:4165–4173

    CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schöcke L, Schink B (1999) Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch Microbiol 171:331–337

    Google Scholar 

  • Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutat Res 197:289–302

    CAS  Google Scholar 

  • Schühle K, Gescher J, Feil U, Paul M, Jahn M, Schägger H, Fuchs G (2003) Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways. J Bacteriol 185:4920–4929

    Google Scholar 

  • Selesi D et al (2010) Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306

    CAS  Google Scholar 

  • Sharak Genthner BR, Townsend GT, Lantz SE, Mueller JG (1997) Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Arch Environ Contam Toxicol 32:99–105

    CAS  Google Scholar 

  • Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen H, Yang Y, Wang W, Wang X, Liu W, Simonich SLM (2012) Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol 46:8123–8130

    CAS  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Sivaram AK, Logeshwaran P, Subashchandrabose SR, Lockington R, Naidu R, Megharaj M (2018) Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Sci Rep 8:2100

    Google Scholar 

  • Skupinska K, Misiewicz I, Kasprzycka-Guttman T (2004) Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61:233–240

    CAS  Google Scholar 

  • Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, Hoboken

    Google Scholar 

  • Sporstol S, Gjos N, Lichtenthaler RG, Gustavsen KO, Urdal K, Oreld F, Skei J (1983) Source identification of aromatic hydrocarbons in sediments using GC/MS. Environ Sci Technol 17:282–286

    CAS  Google Scholar 

  • Stein SE, Fahr A (1985) High-temperature stabilities of hydrocarbons. J Phys Chem 89:3714–3725

    CAS  Google Scholar 

  • Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev Environ Contam Toxicol 234:49–133

    CAS  Google Scholar 

  • Subashchandrabose SR, Krishnan K, Gratton E, Megharaj M, Naidu R (2014) Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. Environ Sci Technol 48:9152–9160

    CAS  Google Scholar 

  • Subashchandrabose SR, Logeshwaran P, Venkateswarlu K, Naidu R, Megharaj M (2017) Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Res 23:223–232

    Google Scholar 

  • Sullivan ER, Zhang X, Phelps C, Young L (2001) Anaerobic mineralization of stable-isotope-labeled 2-methylnaphthalene. Appl Environ Microbiol 67:4353–4357

    CAS  Google Scholar 

  • Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW, Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154:260–266

    CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159

    CAS  Google Scholar 

  • Tang YJ, Carpenter S, Deming J, Krieger-Brockett B (2005) Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments. Environ Sci Technol 39:3368–3373

    CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  • Thomas J, Ward C (1989) In situ biorestoration of organic contaminants in the subsurface. Environ Sci Technol 23:760–766

    CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1983) Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48:569–583

    Google Scholar 

  • Tielens AG (2005) The physics and chemistry of the interstellar medium. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511819056

    Book  Google Scholar 

  • Tongpim S, Pickard MA (1999) Cometabolic oxidation of phenanthrene to phenanthrene trans-9, 10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can J Microbiol 45:369–376

    CAS  Google Scholar 

  • Toth CRA, Berdugo-Clavijo C, O’Farrell CM, Jones GM, Sheremet A, Dunfield PF, Gieg LM (2018) Stable isotope and metagenomic profiling of a methanogenic naphthalene-degrading enrichment culture. Microorganisms 6(3):E65

    Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218

    CAS  Google Scholar 

  • Trably E, Patureau D, Delgenes J (2003) Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Sci Technol 48:53–60

    CAS  Google Scholar 

  • Tsai J-C, Kumar M, Lin J-G (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164:847–855

    CAS  Google Scholar 

  • Tsibart A, Gennadiev A, Koshovskii T, Watts A (2014) Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth 5:1305–1317

    Google Scholar 

  • Tu Q et al (2014) GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 14:914–928

    CAS  Google Scholar 

  • Tuyen LH, Tue NM, Takahashi S, Suzuki G, Viet PH, Subramanian A, Bulbule KA, Parthasarathy P, Ramanathan A, Tanabe S (2014) Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut 194:272–280

    CAS  Google Scholar 

  • Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691

    CAS  Google Scholar 

  • US EPA (1980) Ambient water quality criteria for polynuclear aromatic hydrocarbons. Office of Water Regulation and Standards, Washington. EPA 440/5–80–069

    Google Scholar 

  • US EPA (1982) An exposure and risk assessment for benzo(a)pyrene and other polycyclic aromatic hydrocarbons. Vol. 1. Summary. United States Environmental Protection Agency, Washington. EPA-440/4-85-020-V1. 1982

    Google Scholar 

  • US EPA (2008) Polycyclic aromatic hydrocarbons (PAHs). Office of the Solid Waste, United States Environmental Protection Agency, Washington. https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pahs.pdf. Accessed 12 Nov 2018

    Google Scholar 

  • Valerio F, Bottino P, Ugolini D, Cimberle MR, Tozzi GA, Frigerio A (1984) Chemical and photochemical degradation of polycyclic aromatic hydrocarbons in the atmosphere. Sci Total Environ 40:169–188

    CAS  Google Scholar 

  • Vázquez-Duhalt R, Ayala M, Márquez-Rocha FJ (2001) Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry 58:929–933

    Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202

    CAS  Google Scholar 

  • Wan R, Zhang S, Xie S (2012) Microbial community changes in aquifer sediment microcosm for anaerobic anthracene biodegradation under methanogenic condition. J Environ Sci 24:1498–1503

    CAS  Google Scholar 

  • Wang X-C, Zhang Y-X, Chen RF (2001) Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar Pollut Bull 42:1139–1149

    CAS  Google Scholar 

  • Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18

    Google Scholar 

  • Wania F, Mackay D (1995) A global distribution model for persistent organic chemicals. Sci Total Environ 160:211–232

    Google Scholar 

  • Wania F, Mackay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396A

    CAS  Google Scholar 

  • Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148

    CAS  Google Scholar 

  • Warshawsky D, LaDow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere 69:500–506

    CAS  Google Scholar 

  • Wawrik B et al (2012) Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiol Ecol 81:26–42

    CAS  Google Scholar 

  • Wei C, Bandowe BAM, Han Y, Cao J, Zhan C, Wilcke W (2015) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134:512–520

    CAS  Google Scholar 

  • Weiner JM, Lauck TS, Lovley DR (1998) Enhanced anaerobic benzene degradation with the addition of sulfate. Biorem J 2:159–173

    CAS  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116

    CAS  Google Scholar 

  • Weyrauch P, Zaytsev AV, Stephan S, Kocks L, Schmitz OJ, Golding BT, Meckenstock RU (2017) Conversion of cis-2-carboxycyclohexylacetyl-CoA in the downstream pathway of anaerobic naphthalene degradation. Environ Microbiol 19:2819–2830

    CAS  Google Scholar 

  • White P, Claxton L (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345

    CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The prokaryotes. Springer, New York, pp 3352–3378

    Google Scholar 

  • Wiktorska K, Misiewicz-Krzeminska I, Kasprzycka-Guttman T (2004) Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61(3):233–240

    Google Scholar 

  • Wilcke W (2000) Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil – a review. J Plant Nutr Soil Sci 163:229–248

    CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    CAS  Google Scholar 

  • Wischgoll S, Taubert M, Peters F, Jehmlich N, von Bergen M, Boll M (2009) Decarboxylating and nondecarboxylating glutaryl-coenzyme a dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria. J Bacteriol 191:4401–4409

    CAS  Google Scholar 

  • Wu RS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    CAS  Google Scholar 

  • Xu M et al (2014) Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J 8:1932

    CAS  Google Scholar 

  • Xu M, He Z, Zhang Q, Liu J, Guo J, Sun G, Zhou J (2015) Responses of aromatic-degrading microbial communities to elevated nitrate in sediments. Environ Sci Technol 49:12422–12431

    CAS  Google Scholar 

  • Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, Jiang H (2017) Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv 7:46690–46698

    CAS  Google Scholar 

  • Yang X, Ye J, Lyu L, Wu Q, Zhang R (2013) Anaerobic biodegradation of pyrene by Paracoccus denitrificans under various nitrate/nitrite-reducing conditions. Water Air Soil Pollut 224:1578

    Google Scholar 

  • Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health C 20:149–183

    Google Scholar 

  • Yuan SY, Chang BV (2007) Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. J Environ Sci Health B 42:63–69

    CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    CAS  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764

    CAS  Google Scholar 

  • Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11:117–124

    CAS  Google Scholar 

  • Zhang S, Wang Q, Xie S (2012a) Molecular characterization of phenanthrene-degrading methanogenic communities in leachate-contaminated aquifer sediment. Int J Environ Sci Technol 9:705–712

    CAS  Google Scholar 

  • Zhang S, Wang Q, Xie S (2012b) Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 23:221–230

    Google Scholar 

  • Zhang T, Tremblay P-L, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79:7800–7806

    CAS  Google Scholar 

  • Zhou Z, Yao Y, Wang M, Zuo X (2017) Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition. Arch Microbiol 199:1091–1101

    CAS  Google Scholar 

Download references

Acknowledgment

Kartik Dhar is grateful to the University of Newcastle for UNIPRS and UNRS central scholarship and to the University of Chittagong, Chittagong 4331, Bangladesh, for granting study leave.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallavarapu Megharaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhar, K., Subashchandrabose, S.R., Venkateswarlu, K., Krishnan, K., Megharaj, M. (2019). Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 251. Reviews of Environmental Contamination and Toxicology, vol 251. Springer, Cham. https://doi.org/10.1007/398_2019_29

Download citation

Publish with us

Policies and ethics