Skip to main content

Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 252

Abstract

In the past two decades, increased production and usage of metallic nanoparticles (NPs) have inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and have become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms is poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants have also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MAS (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57

    CAS  Google Scholar 

  • Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48:12561–12568

    CAS  Google Scholar 

  • Adeleye AS, Oranu EA, Tao M, Keller AA (2016) Release and detection of nanosized copper from a commercial antifouling paint. Water Res 102:374–382

    CAS  Google Scholar 

  • Adhikari T, Dube G, Kundu S, Patra AK (2018) Impact of copper oxide nanoparticles on growth of different bacterial species. In: Energy and environment. Springer, Singapore, pp 47–55

    Google Scholar 

  • Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q, Al-Khedhairy AA, Musarrat J (2017) Mitochondrial and chromosomal damage induced by oxidative stress in Zn(2+) ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7:40685

    CAS  Google Scholar 

  • Ahmed B, Hashmi A, Khan MS, Musarrat J (2018a) ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Adv Powder Technol 29:1601–1616

    CAS  Google Scholar 

  • Ahmed B, Khan MS, Musarrat J (2018b) Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environ Pollut 240:802–816

    CAS  Google Scholar 

  • Ahmed B, Khan MS, Saquib Q, Al-Shaeri M, Musarrat J (2018c) Interplay between engineered nanomaterials (ENMs) and edible plants: a current perspective. In: Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA (eds) Phytotoxicity of nanoparticles. Springer, Cham, pp 63–102

    Google Scholar 

  • Ahmed B, Rizvi A, Zaidi A, Khan MS, Musarrat J (2019) Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production. RSC Adv 9:4210–4225

    CAS  Google Scholar 

  • Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One 10:e0131178

    Google Scholar 

  • Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20

    CAS  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896

    Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325

    CAS  Google Scholar 

  • Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24:4340–4346

    CAS  Google Scholar 

  • Arruda SC, Silva AL, Galazzi RM, Azevedo RA, Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1148

    CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    CAS  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    CAS  Google Scholar 

  • Bai W, Tian W, Zhang Z, He X, Ma Y, Liu N, Chai Z (2010) Effects of copper nanoparticles on the development of zebrafish embryos. J Nanosci Nanotechnol 10:8670–8676

    CAS  Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    CAS  Google Scholar 

  • Ben-Sasson M, Lu X, Nejati S, Jaramillo H, Elimelech M (2016) In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 388:1–8

    CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    CAS  Google Scholar 

  • Braz-Mota S, Campos DF, MacCormack TJ, Duarte RM, Val AL, Almeida-Val VMF (2018) Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Sci Total Environ 630:1168–1180

    CAS  Google Scholar 

  • Buffet PE, Richard M, Caupos F, Vergnoux A, Perrein-Ettajani H, Luna-Acosta A, Akcha F, Amiard JC, Amiard-Triquet C, Guibbolini M, Risso-De Faverney C, Thomas-Guyon H, Reip P, Dybowska A, Berhanu D, Valsami-Jones E, Mouneyrac C (2013) A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environ Sci Technol 47:1620–1628

    CAS  Google Scholar 

  • Bundschuh M, Filser J, Luderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6

    Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. Wiley, New York

    Google Scholar 

  • Castillo-Michel HA, Larue C, Pradas del Real AE, Cotte M, Sarret G (2017) Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32

    CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 5:2850–2871

    CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    CAS  Google Scholar 

  • Chen Z, Gao SH, Jin M, Sun S, Lu J, Yang P et al (2019) Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environ Int 125:65–74

    CAS  Google Scholar 

  • Chio CP, Chen WY, Chou WC, Hsieh NH, Ling MP, Liao CM (2012) Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Sci Total Environ 420:111–118

    CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189

    CAS  Google Scholar 

  • Concha-Guerrero SI, Brito EMS, Piñón-Castillo HA, Tarango-Rivero SH, Caretta CA, Luna-Velasco A, Duran R, Orrantia-Borunda E (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1–13. https://doi.org/10.1155/2014/148743

    Article  CAS  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9:11737–11749

    CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    CAS  Google Scholar 

  • Cota-Ruiz K, Delgado-Rios M, Martínez-Martínez A, Núñez-Gastelum JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Current findings on terrestrial plants-engineered nanomaterial interactions: are plants capable of phytoremediating nanomaterials from soil? Curr Opin Environ Sci Health 6:9–15

    Google Scholar 

  • Cotte M et al (2017) The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials. J Anal At Spectrom 32:477–493

    CAS  Google Scholar 

  • da Costa MVJ, Sharma PK (2015) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • del Real AEP, Castillo-Michel H, Kaegi R, Larue C, de Nolf W, Reyes-Herrera J et al (2018) Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils. Environ Sci Nano 5(12):2853–2863

    Google Scholar 

  • Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bull Environ Contam Toxicol 97:702–708

    CAS  Google Scholar 

  • Denluck L, Wu F, Crandon LE, Harper BJ, Harper SL (2018) Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environ Sci Nano 6:1473–1481

    Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129

    CAS  Google Scholar 

  • Du W, Tan W, Yin Y, Ji R, Peralta-Videa JR, Guo H, Gardea-Torresdey JL (2018) Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Total Environ 618:306–312

    CAS  Google Scholar 

  • Duan X, Xu M, Zhou Y, Yan Z, Du Y, Zhang L, Zhang C, Bai L, Nie J, Chen G, Li F (2016) Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Chemosphere 145:185–192

    CAS  Google Scholar 

  • Duran NM, Savassa SM, Lima RG, de Almeida E, Linhares FS, van Gestel CAM, Pereira de Carvalho HW (2017) X-ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. J Agric Food Chem 65:7874–7884

    CAS  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441

    Google Scholar 

  • Gao X, Avellan A, Laughton S, Vaidya R, Rodrigues SM, Casman EA, Lowry GV (2018) CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in Rhizosphere soil. Environ Sci Technol 52:2888–2897

    CAS  Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:2503

    Google Scholar 

  • Gautam A, Ray A, Mukherjee S, Das S, Pal K, Das S, Karmakar P, Ray M, Ray S (2018) Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol Environ Saf 148:620–631

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    CAS  Google Scholar 

  • Giannetto A, Cappello T, Oliva S, Parrino V, De Marco G, Fasulo S, Mauceri A, Maisano M (2018) Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos. Aquat Toxicol 201:187–197

    CAS  Google Scholar 

  • Gogos A, Thalmann B, Voegelin A, Kaegi R (2017) Sulfidation kinetics of copper oxide nanoparticles. Environ Sci Nano 4:1733–1741

    CAS  Google Scholar 

  • Gomes T, Chora S, Pereira CG, Cardoso C, Bebianno MJ (2014) Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu(2)(+): an exploratory biomarker discovery. Aquat Toxicol 155:327–336

    CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2009) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Google Scholar 

  • Gueraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    CAS  Google Scholar 

  • Gupta YR, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y (2016) Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): biochemical, histological and proteomic approaches. Aquac Fish 1:15–23

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Free Radic Biol Med 1:331–332

    Google Scholar 

  • Hanna SK, Miller RJ, Zhou D, Keller AA, Lenihan HS (2013) Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquat Toxicol 142–143:441–446

    Google Scholar 

  • Haris Z, Ahmad I (2017) Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Sci Res 3:1020–1030

    Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    CAS  Google Scholar 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563–564:904–911

    Google Scholar 

  • Huang Y, Zhao L, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51:9774–9783

    CAS  Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    CAS  Google Scholar 

  • Karami MS, de Lima R (2016) Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ Nanotechnol Monit Manage 6:184–193

    Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    CAS  Google Scholar 

  • Katsumiti A, Thorley AJ, Arostegui I, Reip P, Valsami-Jones E, Tetley TD, Cajaraville MP (2018) Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Toxicol In Vitro 48:146–158

    CAS  Google Scholar 

  • Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Google Scholar 

  • Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, Hong J, Gardea-Torresdey JL, Godwin HA, Hanna S, Ji Z, Kaweeteerawat C, Lin S, Lenihan HS, Miller RJ, Nel AE, Peralta-Videa JR, Walker SL, Taylor AA, Torres-Duarte C, Zink JI, Zuverza-Mena N (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40

    Google Scholar 

  • Keller AA, Huang Y, Nelson J (2018) Detection of nanoparticles in edible plant tissues exposed to nano copper using single particle ICP-MS. J Nanopart Res 20:101

    Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806

    CAS  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23:1279–1286

    CAS  Google Scholar 

  • Kovacec E, Regvar M, van Elteren JT, Arcon I, Papp T, Makovec D, Vogel-Mikus K (2017) Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 180:178–185

    CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31:131–135

    CAS  Google Scholar 

  • Kumbhakar DV, Datta AK, Mandal A, Das D, Gupta S, Ghosh B, Halder S, Dey S (2016) Effectivity of copper and cadmium sulphide nanoparticles in mitotic and meiotic cells of Nigella sativa L. (black cumin) – can nanoparticles act as mutagenic agents? J Exp Nanosci 11:823–839

    CAS  Google Scholar 

  • Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR (2013) Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J Anal At Spectrom 28:1220–1232

    CAS  Google Scholar 

  • Laborda F, Bolea E, Jimenez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278

    CAS  Google Scholar 

  • Laborda F, Bolea E, Jimenez-Lamana J (2016) Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends Environ Anal Chem 9:15–23

    CAS  Google Scholar 

  • Lalau CM, Mohedano Rde A, Schmidt EC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini DS, Matias WG (2015) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 252:221–229

    CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    CAS  Google Scholar 

  • Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668

    Google Scholar 

  • Letelier ME, Sanchez-Jofre S, Peredo-Silva L, Cortes-Troncoso J, Aracena-Parks P (2010) Mechanisms underlying iron and copper ions toxicity in biological systems: pro-oxidant activity and protein-binding effects. Chem Biol Interact 188:220–227

    CAS  Google Scholar 

  • Liu Y, Baas J, Peijnenburg WJ, Vijver MG (2016) Evaluating the combined toxicity of Cu and ZnO nanoparticles: utility of the concept of additivity and a nested experimental design. Environ Sci Technol 50:5328–5337

    CAS  Google Scholar 

  • Lofts S, Criel P, Janssen CR, Lock K, McGrath SP, Oorts K, Rooney CP, Smolders E, Spurgeon DJ, Svendsen C, van Eeckhout H, Zhao FZ (2013) Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut 178:244–253

    CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    CAS  Google Scholar 

  • Ma R, Stegemeier J, Levard C, Dale JG, Noack CW, Yang T, Brown GE, Lowry GV (2014) Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environ Sci Nano 1:347–357

    CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772

    CAS  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  Google Scholar 

  • Manusadzianas L, Caillet C, Fachetti L, Gylyte B, Grigutyte R, Jurkoniene S, Karitonas R, Sadauskas K, Thomas F, Vitkus R, Ferard JF (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31:108–114

    CAS  Google Scholar 

  • Mashock MJ, Zanon T, Kappell AD, Petrella LN, Andersen EC, Hristova KR (2016) Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans. PLoS One 11:e0167613

    Google Scholar 

  • McLaren TI, Guppy CN, Tighe MK (2012) A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. Soil Sci Soc Am J 76:1446–1453

    CAS  Google Scholar 

  • Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440

    Google Scholar 

  • Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Lv B, Yang Y, You G, Xu Y (2015) Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J Nanopart Res 17:404

    Google Scholar 

  • Miller RJ, Muller EB, Cole B, Martin T, Nisbet R, Bielmyer-Fraser GK, Jarvis TA, Keller AA, Cherr G, Lenihan HS (2017) Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquat Toxicol 183:85–93

    CAS  Google Scholar 

  • Montes M, Pierce CG, Lopez-Ribot JL, Bhalla AS, Guo RY (2016) Properties of silver and copper nanoparticle containing aqueous suspensions and evaluation of their in vitro activity against Candida albicans and Staphylococcus aureus biofilms. J Nanopart Res 37:109–121

    CAS  Google Scholar 

  • Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922–931

    CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  Google Scholar 

  • Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H (2018) Copper nanoparticles induced genotoxicity, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:872

    Google Scholar 

  • Mudunkotuwa IA, Pettibone JM, Grassian VH (2012) Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46:7001–7010

    CAS  Google Scholar 

  • Mukherjee K, Acharya K (2018) Toxicological effect of metal oxide nanoparticles on soil and aquatic habitats. Arch Environ Contam Toxicol 75:175–186

    CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Gardea-Torresdey J (2016) Effects and uptake of nanoparticles in plants. In: Baoshan Xing CDV, Senesi N (eds) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken, pp 386–408

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nagaonkar D, Shende S, Rai M (2015) Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog 31:557–565

    CAS  Google Scholar 

  • Nair PM, Chung IM (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352

    CAS  Google Scholar 

  • Nair PM, Chung IM (2015a) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    CAS  Google Scholar 

  • Nair PMG, Chung IM (2015b) The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol Plant 59:591–595

    CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa planch. Russ J Ecol 42:458–463

    CAS  Google Scholar 

  • Nhan Le V, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Google Scholar 

  • Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Corros Rev 353:1–57

    CAS  Google Scholar 

  • Olkhovych O, Volkogon M, Taran N, Batsmanova L, Kravchenko I (2016) The effect of copper and zinc nanoparticles on the growth parameters, contents of ascorbic acid, and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. (Araceae). Nanoscale Res Lett 11:218

    Google Scholar 

  • Parada J, Rubilar O, Diez MC, Cea M, da Silva ASA, Rodríguez-Rodríguez CE, Tortella GR (2019) Combined pollution of copper nanoparticles and atrazine in soil: effects on dissipation of the pesticide and on microbiological community profiles. J Hazard Mater 361:228–236

    CAS  Google Scholar 

  • Parra B, Tortella GR, Cuozzo S, Martínez M (2019) Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids. Ecotoxicol Environ Saf 169:662–668

    CAS  Google Scholar 

  • Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J, Zhen X, Chen Y, Shi J (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    CAS  Google Scholar 

  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917

    CAS  Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    CAS  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    CAS  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48:8946–8962

    CAS  Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11:1019–1031

    CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cassio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68

    CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cassio F (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere 89:1142–1150

    CAS  Google Scholar 

  • Pradhan A, Seena S, Schlosser D, Gerth K, Helm S, Dobritzsch M, Krauss GJ, Dobritzsch D, Pascoal C, Cassio F (2015) Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Environ Toxicol Chem 34:923–930

    CAS  Google Scholar 

  • Pullagurala VLR, Rawat S, Adisa IO, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Plant uptake and translocation of contaminants of emerging concern in soil. Sci Total Environ 636:1585–1596

    CAS  Google Scholar 

  • Qiu H, Smolders E (2017) Nanospecific phytotoxicity of CuO nanoparticles in soils disappeared when bioavailability factors were considered. Environ Sci Technol 51:11976–11985

    CAS  Google Scholar 

  • Rajput VD, Chen Y, Ayup M (2015) Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russ J Plant Physiol 62:229–236

    CAS  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2017a) Effect of nanoparticles on crops and soil microbial communities. J Soil Sediment 18:2179–2187

    Google Scholar 

  • Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2017b) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoSci 8:36–42

    Google Scholar 

  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018a) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ 645:1103–1113

    CAS  Google Scholar 

  • Rajput VD, Minkina T, Fedorenko A, Tsitsuashvili V, Mandzhieva S, Sushkova S, Azarov A (2018b) Metal oxide nanoparticles: applications and effects on soil ecosystems. In: Soil contamination: sources, assessment and remediation. Nova Science Publishers, Hauppauge, pp 81–106

    Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018c) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit 9:76–84

    Google Scholar 

  • Rajput VD, Minkina T, Fedorenko A, Mandzhieva S, Sushkova S, Lysenko V, Duplii N, Azarov A, Chokheli V (2018d) Destructive effect of copper oxide nanoparticles on ultrastructure of chloroplast, plastoglobules and starch grains in spring barley (Hordeum sativum distichum). Int J Agric Biol 21:171–174. https://doi.org/10.17957/IJAB/15.0877

    Article  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Google Scholar 

  • Ray D, Pramanik S, Prasad MR, Chaudhuri S, De S (2015) Sugar-mediated ‘green’ synthesis of copper nanoparticles with high antifungal activity. Mater Res Express 2:105002

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: a fourier transform infrared (FT-IR) microspectroscopy study. Appl Spectrosc 69:287–295

    CAS  Google Scholar 

  • Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 1847:889–899

    CAS  Google Scholar 

  • Rui M, Ma C, White JC, Hao Y, Wang Y, Tang X, Yang J, Jiang F, Ali A, Rui Y, Cao W, Chen G, Xing B (2018) Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environ Sci-Nano 5:2088–2102

    CAS  Google Scholar 

  • Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Arostegui I, Orbea A, Cajaraville MP (2015) Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Mar Environ Res 111:107–120

    CAS  Google Scholar 

  • Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J (2017) Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog 111:375–387

    CAS  Google Scholar 

  • Sedighi A, Montazer M (2016) Tunable shaped N-doped CuO nanoparticles on cotton fabric through processing conditions: synthesis, antibacterial behavior and mechanical properties. Cellul 23:2229–2243

    CAS  Google Scholar 

  • Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC (2017a) Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem 110:147–157

    CAS  Google Scholar 

  • Servin AD, Pagano L, Castillo-Michel H, De la Torre-Roche R, Hawthorne J, Hernandez-Viezcas JA, Loredo-Portales R, Majumdar S, Gardea-Torresday J, Dhankher OP, White JC (2017b) Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology 11:98–111

    CAS  Google Scholar 

  • Shah V, Luxton TP, Walker VK, Brumfield T, Yost J, Shah S, Wilkinson JE, Kambhampati M (2016) Fate and impact of zero-valent copper nanoparticles on geographically-distinct soils. Sci Total Environ 573:661–670

    CAS  Google Scholar 

  • Shahid M, Khan MS (2017) Assessment of glyphosate and quizalofop mediated toxicity to greengram (Vigna radiata (L.) Wilczek), stress abatement and growth promotion by herbicide tolerant bradyrhizobium and pseudomonas species. Int J Curr Microbiol App Sci 6:3001–3016

    Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    CAS  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116–117:90–101

    Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    CAS  Google Scholar 

  • Shi J, Ye J, Fang H, Zhang S, Xu C (2018) Effects of copper oxide nanoparticles on paddy soil properties and components. Nano 8(10):839

    Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res Int 22:13710–13723

    CAS  Google Scholar 

  • Simonin M, Cantarel AA, Crouzet A, Gervaix J, Martins JM, Richaume A (2018) Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front Microbiol 9:3102

    Google Scholar 

  • Slotte M, Zevenhoven R (2017) Energy requirements and life cycle assessment of production and product integration of silver, copper and zinc nanoparticles. J Clean Prod 148:948–957

    CAS  Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJ (2015a) Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci Total Environ 518–519:217–224

    Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJ, Galloway TS, Tyler CR (2015b) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189

    CAS  Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  Google Scholar 

  • Sun Y, Zhang G, He Z, Wang Y, Cui J, Li Y (2016) Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 11:905–918

    CAS  Google Scholar 

  • Sun L, Yang J, Fang H, Xu C, Peng C, Huang H, Lu L, Duan D, Zhang X, Shi J (2017) Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants. Environ Pollut 226:426–434

    CAS  Google Scholar 

  • Tan HY, Verbeeck J, Abakumov A, van Tendeloo G (2012) Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116:24–33

    CAS  Google Scholar 

  • Thit A, Selck H, Bjerregaard HF (2013) Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death. Toxicol In Vitro 27:1596–1601

    CAS  Google Scholar 

  • Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C (2018) Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol Biochem 130:408–417

    CAS  Google Scholar 

  • Torres-Duarte C, Adeleye AS, Pokhrel S, Madler L, Keller AA, Cherr GN (2016) Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology 10:671–679

    CAS  Google Scholar 

  • Towett EK, Shepherd KD, Drake BL (2016) Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters X-ray. Spectrometry 45:117–124

    CAS  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    CAS  Google Scholar 

  • Van NL, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    CAS  Google Scholar 

  • VandeVoort A, Arai Y (2018) Macroscopic observation of soil nitrification kinetics impacted by copper nanoparticles: implications for micronutrient nanofertilizer. Nanomaterials (Basel) 8(11):927

    Google Scholar 

  • Vicario-Pares U, Lacave JM, Reip P, Cajaraville MP, Orbea A (2018) Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper. Ecotoxicology 27:89–101

    CAS  Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    CAS  Google Scholar 

  • Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH (2013) Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7:8715–8727

    CAS  Google Scholar 

  • Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol 152:96–104

    CAS  Google Scholar 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016

    CAS  Google Scholar 

  • Wang S, Li Z, Gao M, She Z, Ma B, Guo L, Zheng D, Zhao Y, Jin C, Wang X, Gao F (2017) Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. J Environ Manage 187:330–339

    CAS  Google Scholar 

  • Woo-Mi L, Youn-Joo A, Hyeon Y, Hee-Seok K (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Google Scholar 

  • Xiong ZT, Wang H (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environ Toxicol 20:188–194

    CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    CAS  Google Scholar 

  • You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soil Sediment 18:211–221

    Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    CAS  Google Scholar 

  • Yu S, Liu J, Yin Y, Shen M (2018) Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. J Environ Sci (China) 63:198–217

    Google Scholar 

  • Yuan J, He A, Huang S, Hua J, Sheng GD (2016) Internalization and phytotoxic effects of CuO nanoparticles in Arabidopsis thaliana as revealed by fatty acid profiles. Environ Sci Technol 50:10437–10447

    CAS  Google Scholar 

  • Zakharova OV et al (2018) Biological effects of freshly prepared and 24-h aqueous dispersions of copper and copper oxide nanoparticles on E. coli bacteria. Nanotechnol Russ 13(3–4):173–181

    CAS  Google Scholar 

  • Zhang Z, Ke M, Qu Q, Peijnenburg W, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697

    CAS  Google Scholar 

  • Zhao L, Huang Y, Zhou H, Adeleye AS, Wang H, Ortiz C, Mazer SJ, Keller AA (2016a) GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environ Sci-Nano 3:1114–1123

    CAS  Google Scholar 

  • Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA (2016b) Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol 50:9697–9707

    CAS  Google Scholar 

  • Zhao J, Ren W, Dai Y, Liu L, Wang Z, Yu X, Zhang J, Wang X, Xing B (2017a) Uptake, distribution, and transformation of CuO NPs in a floating plant Eichhornia crassipes and related stomatal responses. Environ Sci Tech 51:7686–7695

    CAS  Google Scholar 

  • Zhao L, Hu J, Huang Y, Wang H, Adeleye A, Ortiz C, Keller AA (2017b) NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiol Biochem 110:138–146

    CAS  Google Scholar 

  • Zhu Y, Xu J, Lu T, Zhang M, Ke M, Fu Z, Pan X, Qian H (2017) A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription. Environ Toxicol Pharmacol 56:43–49

    CAS  Google Scholar 

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17:1783–1793

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education and Science of Russia (project no. 5.948.2017/PP). We are grateful to Prof. Dr. Lok R. Pokhrel, Department of Public Health, East Carolina University, USA, for help in language editing.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Rajput .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajput, V. et al. (2019). Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 252. Reviews of Environmental Contamination and Toxicology, vol 252. Springer, Cham. https://doi.org/10.1007/398_2019_34

Download citation

Publish with us

Policies and ethics