Skip to main content

Nitrogen-Rich Heterocycles

  • Chapter
  • First Online:
Book cover High Energy Density Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 125))

Abstract

Many advantages accrue from nitrogen-rich heterocyclic compounds compared to traditional molecular energetic compounds. Utilization of heterocyclic nitrogen-containing cations and anions in energetic salts gives rise to lower vapor pressures, higher heats of formation and higher densities. Additionally, smaller amounts of hydrogen and carbon contribute to a better oxygen balance than normally is found with their carbocyclic analogues. Nitrogen-rich compounds are promising high energetic materials that may be more acceptable than their alternatives for both industrial and military uses since a higher percentage of their decomposition products will be dinitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregory CE (1984) Explosives for North American Engineers, vol 5. Trans Tech Publications, Clausthal-Zellerfeld, Germany

    Google Scholar 

  2. Davis TL (1943) The Chemistry of Powder and Explosives, vol 2. Wiley, New York

    Google Scholar 

  3. Cook MA (1958) The Science of High Explosives. Reinhold, New York

    Google Scholar 

  4. Akhaven J (2005) Explosives and Propellants. In: Seidel A (ed) Encyclopedia of Chemical Technology. Wiley, Hoboken, N.J.

    Google Scholar 

  5. Urbanski T (1964) Chemistry and Technology of Explosives, vol 3. Pergamon, Oxford

    Google Scholar 

  6. Bailey A, Murray SG (1989) Explosives, Propellent and Pyrotechnics. Brassey's, Oxford

    Google Scholar 

  7. Urbanski T (1984) Chemistry and Technology of Explosives, vol 4. Pergamon, Oxford, p 202

    Google Scholar 

  8. Agrawal JP (1998) Prog Energy Combust Sci 24:1–30

    CAS  Google Scholar 

  9. Singh G, Kapoor IPS, Mannan SM, Kaur J (2000) J Hazard Mater A79:1–18

    Google Scholar 

  10. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Ann Rev Mater Res 31:291–321

    CAS  Google Scholar 

  11. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Angew Chem 45:3584–3601

    CAS  Google Scholar 

  12. Shlyapochnikov VA, Tafipolsky MA, Tokmakov IV, Baskir ES, Anikin OV, Strelenko YA, Luk'yanov OA, Tartakovsky VA (2001) J Molec Struct 559:147–166

    CAS  Google Scholar 

  13. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    CAS  Google Scholar 

  14. Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermochim Acta 388:233–251

    CAS  Google Scholar 

  15. Sikder AK, Sikder NJ (2004) J Hazard Mater A112:1–15

    Google Scholar 

  16. Bottaro J (2005) Ideas to Expand Thinking About New Energetic Materials. In: Shaw RW, Brill TB, Thompson DL (eds) Adv Ser Phys Chem, vol 16. World Scientific, Singapore, pp 473–501

    Google Scholar 

  17. Feuer H, Nielsen AT (1990) Nitro Compounds. VCH, New York

    Google Scholar 

  18. Nielsen AT (1995) Nitrocarbons. VCH, New York

    Google Scholar 

  19. Köhler J, Meyer R (1991) Explosivstoffe, 7th Ed. Wiley, Weinheim, Germany

    Google Scholar 

  20. Köhler J, Meyer R (1998) Explosivstoffe, 9th Ed. Wiley, Weinheim, Germany

    Google Scholar 

  21. Klapötke TM, Krumm B, Holl G, Kaiser M (2000) Energetic Materials: Modeling of Phenomena, Experimental Characterization, Environmental Engineering. Fraunhofer Institut, Karlsruhe, Germany

    Google Scholar 

  22. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KS, Hofman DM (1997) Propell Explos Pyrotech 22:249–255 and references cited therein

    CAS  Google Scholar 

  23. Krause HH (2005) New Energetic Materials. In: Teipal U (ed) Energetic Materials. Wiley, Weinheim, Germany

    Google Scholar 

  24. Hiskey MA, Chavez DE, Naud DL, Son SF, Berghout HL, Bolme CA (2000) Proc Int Pyrotech Semin 27:3–14

    Google Scholar 

  25. Pedley JB (1994) Thermochemical Data and Structure of Organic Compounds, vol I. Thermodynamic Research Center, College Station, TX

    Google Scholar 

  26. Jiminez P, Roux MV, Turrion CJ (1998) Chem Thermodyn 21:759–764

    Google Scholar 

  27. Drake GW, Hawkins T, Brand A, Hall L, McKay M, Vij A, Ismail I (2003) Propell Explos Pyrotech 28(4):174–180

    CAS  Google Scholar 

  28. Drake GW (2003) US Patent 6509473 B1

    Google Scholar 

  29. Schmidt MW, Gordon MS, Boatz JA (2005) J Phys Chem A 109:7285–7295

    CAS  Google Scholar 

  30. Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Inorg Chem 43:7972–7977

    CAS  Google Scholar 

  31. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Chem Mater 17:191–198

    CAS  Google Scholar 

  32. Drake GW, Hawkins T, Tollison K, Hall L, Vij A, Sobaski S (2005) In: Rogers RD, Seddon KR (eds) Ionic Liquids-III A: Fundamentals, Progress, Challenges, and Opportunities. ACS Symposium Series 902. ACS, Washington, DC, pp 259–302

    Google Scholar 

  33. Trohalaki S, Pachter R, Drake GW, Hawkins T (2005) Energ Fuel 19:279–284

    CAS  Google Scholar 

  34. Kaplan G, Drake G, Tollison K, Hall L, Hawkins T (2005) J Heterocycl Chem 42:19–27

    Article  CAS  Google Scholar 

  35. Ostrovskii VA, Pevzner MS, Kofman TP, Tselinskii IV (1999) Targets Heterocycl Syst 3:467–526

    CAS  Google Scholar 

  36. Denault CC, Marx PC, Takimoto HH (1968) J Chem Eng Data 13:514–516

    CAS  Google Scholar 

  37. Xue H, Shreeve JM (2005) Adv Mater 17:2142–2146

    CAS  Google Scholar 

  38. Buscemi S, Pace A, Pibiri I, Vivona N, Spinelli D (2003) J Org Chem 68:605–608

    CAS  Google Scholar 

  39. Funabiki K, Noma N, Shibata K (1999) J Chem Res Synop pp 300–301, and references cited therein

    Google Scholar 

  40. Xue H, Twamley B, Shreeve JM (2004) J Org Chem 69:1397–1400

    CAS  Google Scholar 

  41. Mirzaei YR, Shreeve JM (2003) Synthesis 24–26

    Google Scholar 

  42. Mirzaei YR, Shreeve JM (2002) J Org Chem 67:9340–9345

    CAS  Google Scholar 

  43. Mirzaei YR, Xue H, Shreeve JM (2004) Inorg Chem 43:361–367

    CAS  Google Scholar 

  44. Shitov OP, Korolev VL, Bogdanov VS, Tartakovsky VA (2003) Russ Chem Bull Int Ed 52:695–699

    CAS  Google Scholar 

  45. Egashira M, Scrosati B, Armand M, Beranger S, Michot C (2003) Electrochem Solid State Lett 6(4):A71–A73

    CAS  Google Scholar 

  46. Katritzky A, Singh S, Kirichenko K, Holbrey JD, Smiglak M, Reichert MW, Rogers RD (2005) Chem Commun 868–870

    Google Scholar 

  47. Sitzmann MI (1978) J Org Chem 43:3389–3391

    CAS  Google Scholar 

  48. Kofman TP, Paketina EA (1997) Russ J Org Chem (Eng Trans) 33:1125–1132

    CAS  Google Scholar 

  49. Chernyshev VM, Zemlyakov ND, Il'in VB, Taranushich VA (2000) Zh Prikl Khim 73:791–793

    CAS  Google Scholar 

  50. Ogihara W, Yoshizawa M, Ohno H (2004) Chem Lett 33(8):1022–1023

    CAS  Google Scholar 

  51. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Inorg Chem 44:5068–5072

    CAS  Google Scholar 

  52. Martin AR, Yallop HJ (1958) Trans Faraday Soc 54:257–267

    CAS  Google Scholar 

  53. Ostrovskii VA, Koldobskii GI, Shirokova NP, Poplavskii VS (1981) Khim, Grterotsikl Soedin 4:559–562

    Google Scholar 

  54. Krakovskii IM, MolChanova MS, Evtushenko AV, Shlyapochnikova VA (1998) Russ Chem Bull 47:1266–1273

    Google Scholar 

  55. Kozyro AA, Simirsky VV, Krasulin AP, Sevruk VM, Kabo GJ, Gopanik ML, Grigotiev YV (1990) Zh Fiz Khim 64:656–661

    CAS  Google Scholar 

  56. Gao A, Oyumi Y, Brill TB (1991) Combust Flame 83:345–352

    CAS  Google Scholar 

  57. von Denffer M, Klapötke TM, Kramer G, Spieß G, Welch JM, Heeb G (2005) Propell Explos Pyrotech 30:191–195

    Google Scholar 

  58. Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032–2033

    Google Scholar 

  59. Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:4237–4253

    Google Scholar 

  60. Fisher G, Holl G, Klapötke TM, Weigand JJ (2005) Thermochim Acta 437:168–178

    Google Scholar 

  61. Geith J, Klapötke TM, Weigand J (2004) Propell Explos Pyrotech 29:3–8

    CAS  Google Scholar 

  62. Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl G (2003) Propell Explos Pyrotech 28:165–173

    CAS  Google Scholar 

  63. Hammerl A, Klapötke TM, Mayer P, Weigand JJ, Holl G (2005) Propell Explos Pyrotech 30:17–26

    CAS  Google Scholar 

  64. Klapötke TM, Mayer P, Verma V (2006) Propell Explos Pyrotech 31:263–268

    Google Scholar 

  65. Klapötke TM, Karaghiosoff K, Mayer P, Penger A, Welch JM (2006) Propell Explos Pyrotech 31:188–195

    Google Scholar 

  66. Karaghiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2006) J Org Chem 71:1295–1305

    CAS  Google Scholar 

  67. Hammerl A, Klapötke TM (2002) Inorg Chem 41:906–912

    CAS  Google Scholar 

  68. Thiele J (1892) Liebigs Ann 270:54–63

    Google Scholar 

  69. Thiele J, Marais JT (1893) Justus Liebigs Ann Chem 273:144–160

    Google Scholar 

  70. Thiele J (1893) Ber Dtsch Chem Ges 26:2645–2646

    Google Scholar 

  71. Thiele J (1898) Justus Liebigs Ann Chem 303:57–75

    Google Scholar 

  72. Hammerl A, Holl G, Klapötke TM, Mayer P, Noth H, Piotrowski H, Warchhold M (2002) Eur J Inorg Chem 834–845

    Google Scholar 

  73. Hiskey MA, Goldman N, Stine JR (1998) J Energ Mater 16:119–127

    CAS  Google Scholar 

  74. Peng Y, Wong C (1999) US Patent 5877300 CA 130:196656

    Google Scholar 

  75. Hammerl A, Klapötke TM, Nöth H, Warchhod M, Holl G, Kaiser M, Ticmanis U (2001) Inorg Chem 3570–3575

    Google Scholar 

  76. Hammerl A, Holl G, Kaiser M, Klapötke TM, Mayer P, Piotrowski H, Vogt M (2001) Naturforschung 847–856

    Google Scholar 

  77. Hammerl A, Holl G, Kaiser M, Klapötke TM, Mayer P, Nöth H, Piotrowski H, Suter M (2001) Naturforschung 857–870

    Google Scholar 

  78. Klapotke TM, Holl G (2001) Green Chem G75–G76

    Google Scholar 

  79. Hammerl A, Hiskey MA, Holl G, Klapötke TM, Polborn K, Stierstorfer J, Weigand J (2005) Chem Mater 17:3784–3793

    CAS  Google Scholar 

  80. Tappan BC, Ali AN, Son SF (2006) Propell Explos Pyrotech 31:163–168

    CAS  Google Scholar 

  81. Ye C, Xiao J-C, Twamley B, Shreeve JM (2005) Chem Commun 2750–2752

    Google Scholar 

  82. Hyoda S, Kita M, Sawada H, Nemugaki S, Otsuka S, Miyawaki Y, Ogawa T, Kubo Y (2000) US Patent 6040453, CA: 132:207845

    Google Scholar 

  83. Hyoda S, Kita M, Sugino A, Ueta T, Sato K (2001) EU Patent 1162198, CA: 136:20077

    Google Scholar 

  84. Hyoda S, Kita M, Swada H, Nemugaki S, Ueta T, Satoh K, Otsuka S, Miyawaki Y, Taniguchi H (2000) EU Patent Appl, EP 1016662, CA: 133:74021

    Google Scholar 

  85. Torii S, Tsuyama M, Miyawaki Y, Kubo Y, Ogawa T (2000) Jpn Kokai Tokkyo Koho, JP 2000281662, CA 133:252440

    Google Scholar 

  86. Friedrich M, Gálvez-Ruiz JC, Klapötke TM, Mayer P, Weber P, Weigand JJ (2005) Inorg Chem 44:8044–8052

    CAS  Google Scholar 

  87. Hammerl A, Holl G, Kaiser M, Klapötke TM, Piotrowski H (2003) Z Anorg Allg Chem 629:2117–2121

    CAS  Google Scholar 

  88. Kita M, Ueda T (2004) Jpn Kokai Tokkyo Koho, JP 2004067544, CA 140:217643

    Google Scholar 

  89. Naud DL, Hiskey MA (2003) US Patent Appl Publ, 2003060634, CA:138:255236

    Google Scholar 

  90. Highsmith TK, Hajik RM, Wardle RB, Lund GK, Blau RJ (1995) US Patent 5468866

    Google Scholar 

  91. Gao Y, Ye C, Twamley B, Shreeve JM (2006) Chem-Eur J 12:9010

    CAS  Google Scholar 

  92. Foss ME, Hirst EL, Jones JKN, Springall HD, Thomas AT, Urbanski T (1950) J Chem Soc 624–628

    Google Scholar 

  93. Ang H-G, Fraenk W, Karaghiosoff K, Klapötke TM, Nöth H, Sprott J, Sutter M, Vogt M, Warchhold MZ (2002) Z Anorg Allg Chem 628:2901–2906

    CAS  Google Scholar 

  94. Xue H, Twamley B, Shreeve JM (2006) Eur J Inorg Chem 2959–2965

    Google Scholar 

  95. Chavez DE, Hiskey MA, Naud Di (2004) Propell Explos Pyrotech 29:209–215

    CAS  Google Scholar 

  96. Oxley JC, Smith JL, Chen H (2002) Thermochim Acta 91–99

    Google Scholar 

  97. Chavez DE, Hiskey MA, Gilardi RD (2004) Org Lett 6:2889–2891

    CAS  Google Scholar 

  98. Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S (2005) Propell Explos Pyrotech 30:412–417

    CAS  Google Scholar 

  99. Gao H, Wang R, Twamley B, Hiskey MA, Shreeve JM (2006) Chem Commun 4007–4009

    Google Scholar 

  100. Kerth J, Löbbecke S (2002) Propell Explos Pyrotech 27:111–118

    CAS  Google Scholar 

  101. Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem Int Ed 39:1791–1793

    CAS  Google Scholar 

  102. Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) J Am Chem Soc 127:12537–12543

    CAS  Google Scholar 

  103. Huynh MHV, Hiskey MA, Archuleta JG, Roemer EL, Gilardi R, Chavez DE, Naud DL, Gilardi RD (2004) Angew Chem Int Ed 43:5658–5661

    CAS  Google Scholar 

  104. Miller DR, Swenson DC, Gillan EG (2004) J Am Chem Soc 126:5372–5373

    CAS  Google Scholar 

  105. Huynh MHV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Angew Chem Int Ed 43:4924–4928

    CAS  Google Scholar 

  106. Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi R (2004) J Energ Mater 22:217–229

    CAS  Google Scholar 

  107. Frumkin AE, Churakov AM, Strelenko YA, Kachala VV, Tartakovsky VA (1999) Org Lett 1:721–724

    CAS  Google Scholar 

  108. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924

    CAS  Google Scholar 

  109. Coburn MD, Hiskey MA, Archibald TG (1997) Waste Manag 17:143–146

    CAS  Google Scholar 

  110. Hiskey MA, Coburn MD, Mitchell MA, Benicewicz BC (1992) J Heterocycl Chem 29:1855–1856

    CAS  Google Scholar 

  111. Hiskey MA, Stincipher MM, Brown JE (1993) J Energ Mater 11:157–165

    CAS  Google Scholar 

  112. Gilardi RD, Butcher RJ (1998) J Chem Crystallogr 28(3):163–169

    CAS  Google Scholar 

  113. Coburn MD, Hiskey MA, Oxley JC, Smith JL, Zheng W, Rogers E (1998) J Energ Mater 16(2):73–99

    CAS  Google Scholar 

  114. Jin C-M, Ye C, Piekarski C, Twamley B, Shreeve JM (2005) Eur J Inorg Chem 3760–3767

    Google Scholar 

  115. Zhang M-X, Eaton PE, Gilardi R (2000) Angew Chem Int Ed 39(2):404–401

    Google Scholar 

  116. Chung G, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647–5650

    CAS  Google Scholar 

  117. Fau S, Bartlett RJ (2001) J Phys Chem A 105:4096–4106

    CAS  Google Scholar 

  118. Nguyen NT (2003) Coordinat Chem Rev 244:93–113

    CAS  Google Scholar 

  119. Christe KO, Dixon DA, McLemore D, Wilson WW, Sheehy JA, Boatz JA (2000) J Fluor Chem 101:151–153

    CAS  Google Scholar 

  120. Jones CB, Haiges R, Schroer T, Christe KO (2006) Angew Chem Int Ed 45:4981–4984

    CAS  Google Scholar 

  121. Ju Y, Kumar D, Verma RS (2006) J Org Chem 71:6697–6700

    CAS  Google Scholar 

  122. Muralidharan K, Omotowa BA, Twamley B, Piekarski C, Shreeve JM (2005) Chem Commun 5193–5195

    Google Scholar 

  123. Göbel M, Karaghiosoff K, Klapötke TM (2006) Angew Chem Int Ed 45:6037–6040

    Google Scholar 

  124. Gao H, Ye C, Winter RW, Gard GL, Sitzmann ME, Shreeve JM (2006) Eur J Inorg Chem 3221–3226

    Google Scholar 

  125. Lukyanov OA, Shykova NI (2004) Russ Chem Bull Int Ed 53:566–568

    CAS  Google Scholar 

  126. Gyeong S, Cho JR, Goh EM, Kim J-K (2005) Propell Explos Pyrotech 30:445–449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean'ne M. Shreeve .

Editor information

T. M. Klapötke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, R.P., Gao, H., Meshri, D.T., Shreeve, J.M. (2007). Nitrogen-Rich Heterocycles. In: Klapötke, T.M. (eds) High Energy Density Materials. Structure and Bonding, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2006_055

Download citation

Publish with us

Policies and ethics