Skip to main content

Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology

  • Chapter
  • First Online:
Indoor and Outdoor Nanoparticles

Abstract

The ceramic industry is an industrial sector, which has been growing and including innovative technologies such as laser processes. However, there is a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles, especially as a result of such innovations in the manufacturing processes.

This chapter addresses this issue focusing on ultrafine and nanoparticle emissions during processes in the ceramic industry with potential for unintentional nanoparticle release. The processes under study (laser sintering and ablation of ceramic tiles) have a large potential for global-scale implementation in real-world ceramic industrial facilities. Nanoparticle release mechanisms and their impact on exposure in workplace air are characterised in a selected number of release scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU-OSHA (2009) Workplace exposure to nanomaterials. European Agency for Safety and Health at Work, Bilbao

    Google Scholar 

  2. Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14(4):223–225

    Article  Google Scholar 

  3. Scenihr (2009) Scientific committee on emerging and newly identified health risks. Risk assessment of products of nanotechnologies. European Commission, Health & Consumers DG, Directorate C: Public Health and Risk Assessment. http://ec.europa.eu/health/ph_risk/risk_en.htm. Accessed 2 Apr 2015

  4. Van Broekhuizen P, Van Veelen W, Streekstra W-H, Schulte P, Reijnders L (2012) Exposure limits for nanoparticles: report of an international workshop on nano reference values. Ann Occup Hyg 56(5):515–524. doi:10.1093/annhyg/mes043

    Google Scholar 

  5. Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54(5):514–531. doi:10.1093/annhyg/meq015

    Article  CAS  Google Scholar 

  6. Donaldson K, Tran L, Jimenez L, Duffin R, Newby D, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10

    Article  Google Scholar 

  7. Barcikowski S, Bärsch N, Ostendorf A (2007) Generation of nano-particles during laser ablation – risk assessment of non-beam hazards during laser cleaning. In: Nimmrichter J, Kautek W, Schreiner M (eds) Lasers in the conservation of artworks, vol 116. Springer, Berlin Heidelberg, pp 631–640

    Google Scholar 

  8. Szymczak W, Menzel N, Keck L (2007) Emission of ultrafine copper particles by universal motors controlled by phase angle modulation. J Aerosol Sci 38(5):520–531. doi:10.1016/j.jaerosci.2007.03.002

  9. Evans DE, Heitbrink WA, Slavin TJ, Peters TM (2008) Ultrafine and respirable particles in an automotive grey iron foundry. [Research Support, Non-U S Gov't]. Ann Occup Hyg 52(1):9–21

    Article  Google Scholar 

  10. Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O'Shaughnessy P (2009) Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 6(2):73–81

    Article  CAS  Google Scholar 

  11. Koponen IK, Jensen KA, Schneider T (2009) Sanding dust from nanoparticle-containing paints: physical characterisation. J Phys 151(1):012048

    Google Scholar 

  12. Pfefferkorn FE, Bello D, Haddad G, Park J-Y, Powell M, McCarthy J, Bunker KL, Fehrenbacher A, Jeon Y, Virji MA, Gruetzmacher G, Hoover MD (2010) Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Ann Occup Hyg 54(5):486–503. doi:10.1093/annhyg/meq037

    Article  CAS  Google Scholar 

  13. Göhler D, Stintz M, Hillemann L, Vorbau M (2010) Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann Occup Hyg 54(6):615–624. doi:10.1093/annhyg/meq053

    Article  Google Scholar 

  14. Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, von Vacano B, Strauss V, Treumann S, Wiench K, Ma-Hock L, Landsiedel R (2011) On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7(16):2384–2395

    Article  CAS  Google Scholar 

  15. Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(1):11

    Article  Google Scholar 

  16. Van Broekhuizen P (2012) Nano matters: building blocks for a precautionary approach, PhD thesis. www.ivam.uva.nl/?nanomatters

  17. Schmoll LH, Elzey S, Grassian VH, O'Shaughnessy PT (2009) Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicol 3(4):265–275. doi:10.3109/17435390903121931

    Article  CAS  Google Scholar 

  18. Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1):1–8

    Article  CAS  Google Scholar 

  19. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnology, 2(1):12

    Google Scholar 

  20. Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Revi 41(19):6606–6630. doi:10.1039/c2cs35076a

    Article  CAS  Google Scholar 

  21. Weichenthal S (2012) Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ Res 115:26–36

    Article  CAS  Google Scholar 

  22. Hameri K, Lahde T, Hussein T, Koivisto J, Savolainen K (2009) Facing the key workplace challenge: assessing and preventing exposure to nanoparticles at source. Inhal Toxicol 1:17–24

    Article  Google Scholar 

  23. Friedrichs S, Schulte J (2007) Environmental, health and safety aspects of nanotechnology—implications for the R&D in (small) companies. Sci Technol Adv Mater 8(1–2):12–18. doi:10.1016/j.stam.2006.11.020

  24. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51(1):1–12. doi:10.1093/annhyg/mel071

    Article  CAS  Google Scholar 

  25. Savolainen K, Backman U, Brouwer B, Fadeel B, Fernandes T, Kuhlbusch T, Landsiedel R, Lynch I, Pylkkanen L (2013) Nanosafety in Europe 2015–2025: towards safe and sustainable nanomaterials and nanotechnology innovations. Finnish Institute of Occupational Health. http://www.ttl.fi/en/publications/electronic_publications/pages/default.aspx

  26. Taylor JR, Bull AC, Ceramics IO (1986) Ceramics glaze technology. Institute of Ceramics, Pergamon

    Google Scholar 

  27. Bache CA, Lisk DJ, Scarlett JM, Carbone LG (1991) Epidemiologic study of cadmium and lead in the hair of ceramists and dental personnel. J Toxicol Environ Health 34(4):423–431

    Article  CAS  Google Scholar 

  28. Hirtle B, Teschke K, van Netten C, Brauer M (1998) Kiln emissions and potters' exposures. [Research Support, Non-U S Gov't]. Am Ind Hyg Assoc J 59(10):706–714

    Article  CAS  Google Scholar 

  29. Monfort E, García-Ten J, Celades I, Gazulla MF, Gomar S (2008) Evolution of fluorine emissions during the fast firing of ceramic tile. Appl Clay Sci 38(3–4):250–258. doi:10.1016/j.clay.2007.03.001

  30. Gandra J, Miranda R, Vilaça P, Velhinho A, Teixeira JP (2011) Functionally graded materials produced by friction stir processing. J Mater Process Technol 211(11):1659–1668. doi:10.1016/j.jmatprotec.2011.04.016

  31. Voliotis A, Bezantakos S, Giamarelou M, Valenti M, Kumar P, Biskos G (2014) Nanoparticle emissions from traditional pottery manufacturing. [Research Support, Non-U S Gov't]. Environ Sci Process Impacts 16(6):1489–1494

    Article  CAS  Google Scholar 

  32. Jacobs CWF (1954) Opacifying crystalline phases present in zirconium-type glazes. J Am Ceram Soc 37(5):216–220. doi:10.1111/j.1151-2916.1954.tb14026.x

    Article  CAS  Google Scholar 

  33. Romero M, Rincón JM, Acosta A (2003) Crystallisation of a zirconium-based glaze for ceramic tile coatings. J Eur Ceram Soc 23(10):1629–1635. doi:10.1016/S0955-2219(02)00415-6

  34. Lahoz R, de la Fuente GF, Pedra JM, Carda JB (2011) Laser engraving of ceramic tiles. Int J Appl Ceram Technol 8(5):1208–1217. doi:10.1111/j.1744-7402.2010.02566.x

    Article  CAS  Google Scholar 

  35. Casasola R, Rincón JM, Romero M (2012) Glass–ceramic glazes for ceramic tiles: a review. J Mater Sci 47(2):553–582. doi:10.1007/s10853-011-5981-y

    Article  CAS  Google Scholar 

  36. Celades I (2013) Caracterización física, química, mineralógica y morfológica del material particulado emitido por focos canalizados de la industria de baldosas y fritas cerámicas. PhD, Universitat Jaume I de Castellón, Castellón

    Google Scholar 

  37. NIOSH (2011) Occupational exposure to titanium dioxide, current intelligence bulletin 63. http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf

  38. IARC (2010) The International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: carbon black, titanium dioxide, and talc, vol 93. World Health Organization, International Agency for Research on Cancer, Lyon http://monographs.iarc.fr/ENG/Monographs/vol93/index.php

  39. NIOSH (2007) NIOSH pocket guide to chemical hazards. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. http://www.cdc.gov/niosh/npg

  40. IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl 7:1–440

    Google Scholar 

  41. NIOSH (1988) NIOSH testimony to the U.S. Department of Labor: statement of the National Institute for Occupational Safety and Health. Presented at the public hearing on OSHA PELS/Crystalline Silica, July 1988. NIOSH Policy Statements, Cincinnati

    Google Scholar 

  42. DHHS (1991) Sixth annual report on carcinogens: summary 1991. In: N.U.S.D.o.H.a.H.S. Research Triangle Park, Public Health Service, National Institute of Environmental Health Sciences (ed), pp 357–364

    Google Scholar 

  43. ECHA (2015) Information on chemicals. Registered substances http://echa.europa.eu/information-on-chemicals/registered-substances. Accessed 14 Apr 2015

  44. ACGIH (2015) Threshold limit values for chemical substances and physical agents and biological exposure indices. In: American Conference of Governmental Industrial Hygienists, http://www.acgih.org. ISBN: 978-1-607260-77-6

  45. OSHA (2006) Regulations (Standards – 29 CFR) – Table of Contents, 29 CFR 1910.1000. Z-3. U.S. Department of Labor, Occupational Safety & Health Administration, Washington DC, USA

    Google Scholar 

  46. IFA (2009) Technical Information – Nanoparticles at the workplace. http://www.dguv.de/ifa/Fachinfos/Nanopartikel-am-Arbeitsplatz/index-2.jsp

  47. Schmatjko KJ, Endres G, Schmidt U, Banz PH (1988) Precision machining of ceramic materials by excimer laser irradiation. In: Proceedings of the SPIE 0957, laser beam surface treating and coating, 119 (October 24, 1988); doi:10.1117/12.947710

    Google Scholar 

  48. Toenshoff HK, Gedrat O (1991) Absorption behavior of ceramic materials irradiated with excimer lasers. In: Proceedings of the SPIE 1377, excimer laser materials processing and beam delivery systems, 38 (March 1, 1991). doi:10.1117/12.48071

  49. Jervis TR, Nastasi M, Hubbard KM, Hirvonen JP (1993) Excimer laser surface processing of ceramics: process and properties. J Am Ceram Soc 76(2):350–355. doi:10.1111/j.1151-2916.1993.tb03791.x

    Article  CAS  Google Scholar 

  50. de Francisco I, Lennikov VV, Bea JA, Vegas A, Carda JB, de la Fuente GF (2011) In-situ laser synthesis of rare earth aluminate coatings in the system Ln-Al-O (Ln=Y, Gd). Sol State Sci 13(9):1813–1819. doi:10.1016/j.solidstatesciences.2011.07.013

  51. Estepa C, de la Fuente GF (2006) Continuous Furnace with Coupled Laser for the Surface Treatment of Materials. Patent No. 200600560

    Google Scholar 

  52. Bäuerle D (1996) Laser processing and chemistry. Springer-Verlag, Berlin

    Google Scholar 

  53. Rubahn H-G (1999) Laser applications in surface science and technology. Wiley, New York

    Google Scholar 

  54. Methner M, Hodson L, Geraci C (2010) Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg 7(3):127–132. doi:10.1080/15459620903476355

    Article  CAS  Google Scholar 

  55. VCI, BAuA, RCI, B, IFA, IUTA, TUD (2011) Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations. https://www.vci.de/vci/downloads-vci/tiered-approach.pdf

  56. Asbach C, Kuhlbusch T, Kaminski H, Stahlmecke B, Plitzko S, G­tz U, Voetz M, Kiesling HJ, Dahmann D (2012) NanoGEM Standard operation procedures for assessing exposure to nanomaterials, following a tiered approach. Federal Ministry of Education and Research. http://www.nanogem.de/cms/nanogem/upload/Veroeffentlichungen/nanoGEM_SOPs_Tiered_Approach.pdf

  57. Fierz M, Houle C, Steigmeier P, Burtscher H (2011) Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Technol 45(1):1–10. doi:10.1080/02786826.2010.516283

    Article  CAS  Google Scholar 

  58. Misra C, Singh M, Shen S, Sioutas C, Hall PM, Sioutas C, Hall PM (2002) Development and evaluation of a personal cascade impactor sampler (PCIS). J Aerosol Sci 33:1027–1047

    Article  CAS  Google Scholar 

  59. Querol X, Alastuey A, Rodríguez S, Plana F, Ruiz CR, Cots N, Massagué G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos Environ 35:6407–6419

    Article  CAS  Google Scholar 

  60. Brouwer D, van Duuren-Stuurman B, Berges M, Jankowska E, Bard D, Mark D (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11(8):1867–1881. doi:10.1007/s11051-009-9772-1

    Article  CAS  Google Scholar 

  61. ICRP (1994) International commission on radiological protection: human respiratory tract model for radiological protection. ICRP Publication/Elsevier, Tarrytown p 66

    Google Scholar 

  62. Kaminski H, Beyer M, Fissan H, Asbach C, Kuhlbusch TAJ (2015) Measurements of nanoscale TiO2 and Al2O3 in industrial workplace environments – methodology and results. Aerosol Air Qual Res 15(1):129–141. doi:10.4209/aaqr.2014.03.0065

    CAS  Google Scholar 

  63. Fonseca AS, Viana M, Querol X, Moreno N, de Francisco I, Estepa C, de la Fuente GF (2015) Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. J Aerosol Sci 88:48–57

    Article  CAS  Google Scholar 

  64. Kumar P, Fennell P, Britter R (2008) Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci Total Environ 402(1):82–94. doi:10.1016/j.scitotenv.2008.04.032

  65. Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD (2006) The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 50(3):249–257

    Article  Google Scholar 

  66. Koivisto AJ, Hussein T, Niemelä R, Tuomi T, Hämeri K (2010) Impact of particle emissions of new laser printers on modeled office room. Atmos Environ 44(17):2140–2146. doi:10.1016/j.atmosenv.2010.02.023

  67. Dylla H, Hassan M (2012) Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles. J Nanopart Res 14(4):1–15. doi:10.1007/s11051-012-0825-5

    Article  Google Scholar 

  68. Azarmi F, Kumar P, Mulheron M (2014) The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J Hazard Mater 279:268–279. doi:10.1016/j.jhazmat.2014.07.003

  69. Jordán MM, Álvarez C, Sanfeliu T (2006) Spherical particles as tracers of atmospheric ceramic industry. Environ Geol 51(3):447–453. doi:10.1007/s00254-006-0339-5

    Article  Google Scholar 

  70. Sanfeliu T, Jordán M, Gómez E, Alvarez C, Montero M (2002) Contribution of the atmospheric emissions of Spanish ceramics industries. Environ Geol 41(5):601–607. doi:10.1007/s002540100427

    Article  CAS  Google Scholar 

  71. Minguillon MC, Monfort E, Querol X, Alastuey A, Celades I, Miro JV (2009) Effect of ceramic industrial particulate emission control on key components of ambient PM10. [Research Support, Non-U S Gov't]. J Environ Manage 90(8):2558–2567

    Article  CAS  Google Scholar 

  72. Sánchez de la Campa AM, de la Rosa JD, González-Castanedo Y, Fernández-Camacho R, Alastuey A, Querol X, Pio C (2010) High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmos Res 96(4):633–644. doi:10.1016/j.atmosres.2010.02.011

  73. Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41(34):7219–7231. doi:10.1016/j.atmosenv.2007.05.022

  74. Seinfield JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New Jersey. ISBN: 9781118591369. https://books.google.es/books?id=YH2K9eWsZOcC

  75. Viana M, Rivas I, Querol X, Alastuey A, Sunyer J, Álvarez-Pedrerol M, Bouso L, Sioutas C (2014) Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmos Chem Phys 14(9):4459–4472. doi:10.5194/acp-14-4459-2014

    Article  CAS  Google Scholar 

  76. Kuhlbusch TAJ, Quass U, Koch M, Fissan H, Bruckmann P, Pfeffer U (2004) PM10 source apportionment at three urban back ground sites In the western Ruhr-area, Germany. J Aerosol Sci 35(Suppl 1):79–90. doi:10.1016/j.jaerosci.2004.06.027

  77. Albuquerque PC, Gomes JF, Bordado JC (2012) Assessment of exposure to airborne ultrafine particles in the urban environment of Lisbon, Portugal. J Air Waste Manag Assoc 62(4):373–380

    Article  CAS  Google Scholar 

  78. Gomes J, Bordado J, Albuquerque P (2012) On the assessment of exposure to airborne ultrafine particles in urban environments. J Toxicol Environ Health A 75(22–23):1316–1329

    Article  CAS  Google Scholar 

  79. Reche C, Viana M, Brines M, Pérez N, Beddows D, Alastuey A, Querol X (2015) Determinants of aerosol lung-deposited surface area variation in an urban environment. Sci Total Environ 517:38–47. doi:10.1016/j.scitotenv.2015.02.049

    Article  CAS  Google Scholar 

  80. de la Fuente (2013) Laser applications in industry. China University of Geosciences, Wuhan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonseca, A.S. et al. (2015). Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_422

Download citation

Publish with us

Policies and ethics