Skip to main content

Occurrence and Ecotoxicological Effects of Microplastics on Aquatic and Terrestrial Ecosystems

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

The practice of using plastic for several decades now has shown its close association with us owing to its omnipresence in water and food we consume and the air we breathe. Anthropogenic activity, the most imperative cause of microplastic (MP) contamination, is evidenced in various ecosystems from land to river, oceans, and artic to antarctic habitats. Their distribution depends on environmental factors like precipitation, wind flow, tides, waves, etc., and 75–90% plastic debris contamination comes from the terrestrial sources. Asian countries are contributing to 50% of plastic production globally, and around 18–19% of plastic is produced by Europe and North America. MP contamination has shown to pose a serious threat to different trophic levels in the terrestrial and aquatic ecosystems resulting in active ingestion, feeding impairment, stunted growth, reduced reproduction in terms of oocyte formation and decreased sperm velocity, offspring formation, changes in gene expression profiling, etc. from producer to consumer level. Owing to its relatively large surface area, MPs act as potent vectors in carrying persistent organic contaminants and noninvasive species to pristine water bodies. It is a wake-up call for ecotoxicologists and ecologists to study the potential adverse effects of MPs at environmentally reported particle range (since most of the effects noted and/or overestimated at relatively higher concentrations) and protection of ecosystem for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  2. Plastics Europe (2018) Plastics – the Factsan analysis of European plastics production. Demand and Waste Data

    Google Scholar 

  3. Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K (2018) Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 8(1):4666. https://doi.org/10.1038/s41598-018-22939-w

    Article  CAS  Google Scholar 

  4. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  Google Scholar 

  5. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  6. Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58(8):1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025

    Article  CAS  Google Scholar 

  7. Ballent A, Corcoran PL, Madden O, Helm PA, Longstaffe FJ (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull 110(1):383–395. https://doi.org/10.1016/j.marpolbul.2016.06.037

    Article  CAS  Google Scholar 

  8. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastics on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  Google Scholar 

  9. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):1–25. https://doi.org/10.1186/s12302-015-0069-y

    Article  CAS  Google Scholar 

  10. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  11. Mehlhart G, Blepp M (2012) Study on land-sourced litter (LSL) in the marine environment: review of sources and literature in the context of the initiative of the declaration of the global plastics associations for solutions on marine litter. Öko-Institut eV, Darmstadt/Freiburg

    Google Scholar 

  12. Europe P (2015) Plastics the facts 2014/2015: an analysis of European plastics production, demand and waste data. Plastic Europe, Brussels

    Google Scholar 

  13. Rillig MC, Lehmann A, de Souza Machado AA, Yang G (2019) Microplastics effects on plants. New Phytol https://doi.org/10.1111/nph.15794

  14. He D, Luo Y, Lu S, Liu M, Song Y, Lei L (2018) Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2018.10.006

  15. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1–2):178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029

    Article  CAS  Google Scholar 

  16. Thompson RC, Napper IE (2018) Microplastics in the environment. Plast Environ 47:60

    Article  Google Scholar 

  17. Akdogan Z, Guven B (2019) Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut 5:113011. https://doi.org/10.1016/j.envpol.2019.113011

    Article  CAS  Google Scholar 

  18. Karbalaei S, Hanachi P, Walker TR, Cole M (2018) Occurrence, sources, human health impacts and mitigation of microplastics pollution. Environ Sci Pollut Res 25(36):36046–36063. https://doi.org/10.1007/s11356-018-3508-7

    Article  CAS  Google Scholar 

  19. Lam CS, Ramanathan S, Carbery M, Gray K, Vanka KS, Maurin C, Bush R, Palanisami T (2018) A comprehensive analysis of plastics and microplastics legislation worldwide. Water Air Soil Pollut 229(11):345. https://doi.org/10.1007/s11270-018-4002-z

    Article  CAS  Google Scholar 

  20. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50(5):2685–2691. https://doi.org/10.1021/acs.est.5b05478

    Article  CAS  Google Scholar 

  21. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771. https://doi.org/10.1126/science.1260352

    Article  CAS  Google Scholar 

  22. Lwanga EH, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  CAS  Google Scholar 

  23. de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  24. Wan Y, Wu C, Xue Q, Hui X (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582. https://doi.org/10.1111/nph.15794

    Article  CAS  Google Scholar 

  25. Mai L, Bao LJ, Wong CS, Zeng EY (2018) Microplastics in the terrestrial environment. In: Microplastics contamination in aquatic environments. Elsevier, Amsterdam, pp 365–378. https://doi.org/10.1016/B978-0-12-813747-5.00012-6

    Chapter  Google Scholar 

  26. Zylstra ER (2013) Accumulation of wind-dispersed trash in desert environments. J Arid Environ 89:13–15. https://doi.org/10.1016/j.jaridenv.2012.10.004

    Article  Google Scholar 

  27. Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50(20):10777–10779. https://doi.org/10.1021/acs.est.6b04140

    Article  CAS  Google Scholar 

  28. Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG (2016) A theoretical assessment of microplastics transport in river catchments and their retention by soils and river sediments. Environ Sci: Processes Impacts 18(8):1050–1059. https://doi.org/10.1039/c6em00206d

    Article  CAS  Google Scholar 

  29. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastics particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    Article  CAS  Google Scholar 

  30. Albertsson AC (1980) The shape of the biodegradation curve for low and high density polyethenes in prolonged series of experiments. Eur Polym J 16(7):623–630. https://doi.org/10.1016/0014-3057(80)90100-7

    Article  CAS  Google Scholar 

  31. Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeter Biodegr 63(1):106–111. https://doi.org/10.1016/j.ibiod.2008.06.005

    Article  CAS  Google Scholar 

  32. Karbalaei S, Hanachi P, Walker TR, Cole M (2018) Occurrence, sources, human health impacts and mitigation of microplastics pollution. Environ Sci Pollut Res 25(36):36046–36063. https://doi.org/10.1007/s11356-018-3508-7

    Article  CAS  Google Scholar 

  33. Blaesing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  34. Fuller S, Gautam A (2016) A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol 50(11):5774–5780. https://doi.org/10.1021/acs.est.6b00816

    Article  CAS  Google Scholar 

  35. Rillig MC (2012) Microplastics in terrestrial ecosystems and the soil? https://doi.org/10.1021/es302011r

  36. Welden NA, Cowie PR (2016) Environment and gut morphology influence microplastics retention in langoustine, Nephrops norvegicus. Environ Pollut 214:859–865. https://doi.org/10.1016/j.envpol.2016.03.067

    Article  CAS  Google Scholar 

  37. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  38. Nigam R (1982) Plastic pellets on the Caranzalem beach sands, Goa. India. Mahasagar Bull Natl Inst Oceanogr 15:125–127

    Google Scholar 

  39. Reddy MS, Basha S, Adimurthy S, Ramachandraiah G (2006) Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuarine, Coastal and Shelf Science 68(3–4):656–660. https://doi.org/10.1016/j.ecss.2006.03.018

    Article  Google Scholar 

  40. Jayasiri HB, Purushothaman CS, Vennila A (2013) Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar Pollut Bull 77(1–2):107–112. https://doi.org/10.1016/j.marpolbul.2013.10.024

    Article  CAS  Google Scholar 

  41. Veerasingam S, Mugilarasan M, Venkatachalapathy R, Vethamony P (2015) Influence of flood on the distribution and occurrence of microplastics pellets along the Chennai coast, India. Mar Pollut Bull 109(1):196–204. https://doi.org/10.1016/j.marpolbul.2016.05.082

    Article  CAS  Google Scholar 

  42. Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T (2017) Microplastics in the Southern Ocean. Mar Pollut Bull 114(1):623–626. https://doi.org/10.1016/j.marpolbul.2016.09.037

    Article  CAS  Google Scholar 

  43. Sun X, Li Q, Zhu M, Liang J, Zheng S, Zhao Y (2017) Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar Pollut Bull 115(1–2):217–224. https://doi.org/10.1016/j.marpolbul.2016.12.004

    Article  CAS  Google Scholar 

  44. Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastics on marine microalgae Skeletonema costatum: interactions between microplastics and algae. Environ Pollut 220:1282–1288. https://doi.org/10.1016/j.envpol.2016.11.005

    Article  CAS  Google Scholar 

  45. Beer S, Garm A, Huwer B, Dierking J, Nielsen TG (2018) No increase in marine microplastics concentration over the last three decades–a case study from the Baltic Sea. Sci Total Environ 621:1272–1279. https://doi.org/10.1016/j.scitotenv.2017.10.101

    Article  CAS  Google Scholar 

  46. Klein S, Worch E, Knepper TP (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol 49(10):6070–6076. https://doi.org/10.1021/acs.est.5b00492

    Article  CAS  Google Scholar 

  47. Campbell SH, Williamson PR, Hall BD (2017) Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. Facets 2(1):395–409. https://doi.org/10.1139/facets-2017-0008

    Article  Google Scholar 

  48. Moore CJ, Lattin GL, Zellers AF (2011) Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. J Integrated Coast Zone Manag 11(1):65–73. https://doi.org/10.5894/rgci194

    Article  Google Scholar 

  49. Alencastro D (2012) Pollution due to plastics and microplastics in Lake Geneva and in the Mediterranean Sea. Arch Sci 65:157–164. https://doi.org/10.5169/seals-738358

    Article  Google Scholar 

  50. Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sediments of a subalpine lake with microplastics particles. Curr Biol 23(19):R867–R868. https://doi.org/10.1016/j.cub.2013.09.001

    Article  CAS  Google Scholar 

  51. Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastics debris enhances oviposition in an endemic pelagic insect. Biol Lett 8(5):817–820. https://doi.org/10.1098/rsbl.2012.0298

    Article  Google Scholar 

  52. Norén F, Naustvoll LJ (2010) Survey of microscopic anthropogenic particles in Skagerrak. Report commissioned by Klima-og Forurensningsdirektoratet

    Google Scholar 

  53. Wentworth J, Stafford C (2016) Marine microplastics pollution, POSTNOTE (528), Houses of Parliament, UK. http://researchbriefings.parliament.uk/ResearchBriefing/Summary/POSTPN

  54. Napper IE, Thompson RC (2016) Release of synthetic microplastics plastic fibers from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1–2):39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025

    Article  CAS  Google Scholar 

  55. Gouin T, Roche N, Lohmann R, Hodges G (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastics. Environ Sci Technol 45(4):1466–1472. https://doi.org/10.1021/es1032025

    Article  CAS  Google Scholar 

  56. Rochman CM, Kross SM, Armstrong JB, Bogan MT, Darling ES, Green SJ, Smyth AR, Veríssimo D (2015) Scientific evidence supports a ban on microbeads. https://doi.org/10.1021/acs.est.5b03909

  57. Anbumani S, Kakkar P (2018) Ecotoxicological effects of microplastics on biota: a review. Environ Sci Pollut Res 25(15):14373–14396. https://doi.org/10.1007/s11356-018-1999-x

    Article  CAS  Google Scholar 

  58. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

  59. Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, Teng Y, Christie P, Luo Y (2016) Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177. https://doi.org/10.1016/j.chemosphere.2016.02.076.

    Article  CAS  Google Scholar 

  60. Erkekoglu P, Kocer-Gumusel B (2014) Genotoxicity of phthalates. Toxicol Mech Methods 24(9):616–626. https://doi.org/10.3109/15376516.2014.960987

    Article  CAS  Google Scholar 

  61. Magdouli S, Daghrir R, Brar SK, Drogui P, Tyagi RD (2013) Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J Environ Manage 127:36–49. https://doi.org/10.1016/j.jenvman.2013.04.013

    Article  CAS  Google Scholar 

  62. Sun J, Wu X, Gan J (2015) Uptake and metabolism of phthalate esters by edible plants. Environ Sci Technol 49(14):8471–8478. https://doi.org/10.1021/acs.est.5b01233

    Article  CAS  Google Scholar 

  63. Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62(11):806–818. https://doi.org/10.1136/oem.2004.017590

    Article  CAS  Google Scholar 

  64. Awet TT, Kohl Y, Meier F, Straskraba S, Grün AL, Ruf T, Jost C, Drexel R, Tunc E, Emmerling C (2018) Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ Sci Eur 30(1):11. https://doi.org/10.1186/s12302-018-0140-6

    Article  CAS  Google Scholar 

  65. de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  66. Sun M, Ye M, Jiao W, Feng Y, Yu P, Liu M, Jiao J, He X, Liu K, Zhao Y, Wu J (2018) Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastics-contaminated greenhouse soil facilitated by sophorolipid. J Hazard Mater 345:131–139. https://doi.org/10.1016/j.jhazmat.2017.11.036

    Article  CAS  Google Scholar 

  67. Lei L, Liu M, Song Y, Lu S, Hu J, Cao C, Xie B, Shi H, He D (2018) Polystyrene (nano) microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ Sci Nano 5(8):2009–2020. https://doi.org/10.1039/C8EN00412A

    Article  CAS  Google Scholar 

  68. Lassen C, Hansen SF, Magnusson K, Hartmann NB, Jensen PR, Nielsen TG, Brinch A (2015) Microplastics: occurrence, effects and sources of releases to the environment in Denmark. Environmental Project No. 1793. ISBN No: 978-87-93352-80-3

    Google Scholar 

  69. Rodriguez-Seijo A, Lourenço J, Rocha-Santos TA, Da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503. https://doi.org/10.1016/j.envpol.2016.09.092

    Article  CAS  Google Scholar 

  70. Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM (2015) Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci Total Environ 523:74–81. https://doi.org/10.1016/j.scitotenv.2015.03.142

    Article  CAS  Google Scholar 

  71. Besseling E, Wegner A, Foekema EM, Van Den Heuvel-Greve MJ, Koelmans AA (2012) Effects of microplastics on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593–600. https://doi.org/10.1021/es302763x

    Article  CAS  Google Scholar 

  72. Gaylor MO, Harvey E, Hale RC (2013) Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils. Environ Sci Technol 47(23):13831–13839. https://doi.org/10.1021/es403750a

    Article  CAS  Google Scholar 

  73. Rodríguez-Seijo A, da Costa JP, Rocha-Santos T, Duarte AC, Pereira R (2018) Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environ Sci Pollut Res 25(33):33599–33610. https://doi.org/10.1007/s11356-018-3317-z

    Article  CAS  Google Scholar 

  74. Zhao S, Zhu L, Li D (2016) Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: not only plastics but also natural fibers. Sci Total Environ 550:1110–1115. https://doi.org/10.1016/j.scitotenv.2016.01.112

    Article  CAS  Google Scholar 

  75. Kokalj AJ, Horvat P, Skalar T, Kržan A (2018) Plastic bag and facial cleanser derived microplastics do not affect feeding behaviour and energy reserves of terrestrial isopods. Sci Total Environ 615:761–766. https://doi.org/10.1016/j.scitotenv.2017.10.020

    Article  CAS  Google Scholar 

  76. Lwanga EH, Vega JM, Quej VK, de los Angeles Chi J, del Cid LS, Chi C, Segura GE, Gertsen H, Salánki T, van der Ploeg M, Koelmans AA (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  Google Scholar 

  77. Lwanga EH, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  CAS  Google Scholar 

  78. Maaß S, Daphi D, Lehmann A, Rillig MC (2017) Transport of microplastics by two collembolan species. Environ Pollut 225:456–459. https://doi.org/10.1016/j.envpol.2017.03.009

    Article  CAS  Google Scholar 

  79. Rillig MC, Ingraffia R, de Souza Machado AA (2017) Microplastics incorporation into soil in agroecosystems. Front Plant Sci 8:1805. https://doi.org/10.3389/fpls.2017.01805

    Article  Google Scholar 

  80. Lwanga EH, Vega JM, Quej VK, de los Angeles Chi J, del Cid LS, Chi C, Segura GE, Gertsen H, Salánki T, van der Ploeg M, Koelmans AA (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  Google Scholar 

  81. Rillig MC, Ziersch L, Hempel S (2017) Microplastics transport in soil by earthworms. Sci Rep 7(1):1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  Google Scholar 

  82. Zhu D, Bi QF, Xiang Q, Chen QL, Christie P, Ke X, Wu LH, Zhu YG (2018) Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ Pollut 235:150–154. https://doi.org/10.1016/j.envpol.2017.12.058

    Article  CAS  Google Scholar 

  83. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C114(39):16556–16561. https://doi.org/10.1021/jp1054759

    Article  CAS  Google Scholar 

  84. Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MH, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261. https://doi.org/10.1016/j.aquatox.2015.12.002

    Article  CAS  Google Scholar 

  85. Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A (2016) Microplastics interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339. https://doi.org/10.1016/j.envpol.2016.05.006

    Article  CAS  Google Scholar 

  86. Zhang W, Zhang S, Wang J, Wang Y, Mu J, Wang P, Lin X, Ma D (2017) Microplastics pollution in the surface waters of the Bohai Sea, China. Environ Pollut 231:541–548. https://doi.org/10.1016/j.envpol.2017.08.058

    Article  CAS  Google Scholar 

  87. Davarpanah E, Guilhermino L (2015) Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuar Coast Shelf Sci 167:269–275. https://doi.org/10.1016/j.ecss.2015.07.023

    Article  CAS  Google Scholar 

  88. Lyakurwa DJ (2017) Uptake and effects of microplastics particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica, Master’s thesis, NTNU

    Google Scholar 

  89. Long M, Moriceau B, Gallinari M, Lambert C, Huvet A, Raffray J, Soudant P (2015) Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46. https://doi.org/10.1016/j.marchem.2015.04.003

    Article  CAS  Google Scholar 

  90. Long M, Paul-Pont I, Hegaret H, Moriceau B, Lambert C, Huvet A, Soudant P (2017) Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ Pollut 228:454–463. https://doi.org/10.1016/j.envpol.2017.05.047

    Article  CAS  Google Scholar 

  91. Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sediments of a subalpine lake with microplastics particles. Curr Biol 23(19):R867–R868. https://doi.org/10.1016/j.cub.2013.09.001

    Article  CAS  Google Scholar 

  92. Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28(10):2142–2149. https://doi.org/10.1897/08-559.1

    Article  CAS  Google Scholar 

  93. Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173. https://doi.org/10.1016/j.envpol.2016.10.061

    Article  CAS  Google Scholar 

  94. Ogonowski M, Schür C, Jarsén Å, Gorokhova E (2016) The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PloS One 11(5):e0155063. https://doi.org/10.1371/journal.pone.0155063

    Article  CAS  Google Scholar 

  95. Lei L, Wu S, Lu S, Liu M, Song Y, Fu Z, Shi H, Raley-Susman KM, He D (2018) Microplastics particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103

    Article  CAS  Google Scholar 

  96. Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263. https://doi.org/10.1038/srep03263

    Article  Google Scholar 

  97. Ramos JA, Barletta M, Costa MF (2012) Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds. Aquat Biol 17(1):29–34. https://doi.org/10.3354/ab00461

    Article  Google Scholar 

  98. Sanchez W, Bender C, Porcher JM (2014) Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environ Res 128:98–100. https://doi.org/10.1016/j.envres.2013.11.004

    Article  CAS  Google Scholar 

  99. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060. https://doi.org/10.1021/acs.est.6b00183

    Article  CAS  Google Scholar 

  100. Veneman WJ, Spaink HP, Brun NR, Bosker T, Vijver MG (2017) Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquat Toxicol 190:112–120. https://doi.org/10.1016/j.aquatox.2017.06.014

    Article  CAS  Google Scholar 

  101. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastics ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655. https://doi.org/10.1021/es400663f

    Article  CAS  Google Scholar 

  102. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137. https://doi.org/10.1021/es504525u

    Article  CAS  Google Scholar 

  103. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet ME, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci 113(9):2430–2435. https://doi.org/10.1073/pnas.1519019113

  104. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031. https://doi.org/10.1021/es800249a

    Article  CAS  Google Scholar 

  105. Von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335. https://doi.org/10.1021/es302332w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadasivam Anbumani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, V., Dwivedi, S., Gautam, K., Seth, M., Anbumani, S. (2020). Occurrence and Ecotoxicological Effects of Microplastics on Aquatic and Terrestrial Ecosystems. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_456

Download citation

Publish with us

Policies and ethics