Skip to main content

Numerical Models for Oil Spillages in the Black Sea and the Adjacent Sea of Azov

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

This chapter presents an overview and inter-comparison of the main characteristics of the known well-established oil spill models applied in the Black Sea and the Sea of Azov. Since the development of the MyOcean Black Sea Forecasting Centre and, later on, of the Copernicus Black Sea Monitoring Forecasting Centre (CMEMS Black Sea MFC), several oil spill models have been implemented during preparedness exercises and after oil slicks detected from satellite remote sensing Synthetic Aperture Radar (SAR) data. Particularly, in the framework of pilot projects with the European Maritime Safety Agency CleanSeaNet (EMSA-CSN), 24 h forward and backtracking spill predictions were initiated in near real time using the satellite data provided through EMSA-CSN portal. In addition, several European Commission projects, for example, the European Marine Observation and Data Network (EMODnet) Black Sea Check points addressed issues related to oil leakages in the Black Sea taking advantage of the operational met-ocean forecasting in the region, is summarized in the chapter. Examples of oil spills modelling applications in the Black Sea and the Sea of Azov are presented using met-ocean forecasting data and satellite data. The catastrophic Volgoneft-139 oil spill in the Kerch Strait, in November 2007, is described. Several contemporary well-established oil spill modelling systems, three of them, MEDSLIK, MEDSLIK-II, BlackSeaTrackWeb were applied during emergencies and warnings, while the rest examined modelling systems, GNOME, MOTHY, OILTOX, OILMAP, OSCAR were applied during dedicated risk assessments. All these oil spill modelling systems implemented in the Black Sea and the Sea of Azov were inter-compared in terms of their characteristics concerning the physical/chemical spill processes, number of different oil types, type of oil discharges, initial slick shape, type of slick discharges and areas of oil spill model’s applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Korshenko A, Ilyin Y, Velikova V (eds) (2011) Oil spill accident in the Kerch Strait in November 2007. Black Sea Commission publications. Nauka, Moscow, 288 p

    Google Scholar 

  2. Mityagina MI, Lavrova (2012) O.Y. Satellite survey in the Black Sea coastal zone. Int Water Technol J 2:67–79. https://doi.org/10.1134/S00014338130901073

    Article  Google Scholar 

  3. Zhiltsov SS, Zonn IS, Kostianoy AG (eds) (2016) Oil and gas pipelines in the Black-Caspian seas region. Springer, Cham, 288 pp. https://doi.org/10.1007/978-3-319-43908-2

    Book  Google Scholar 

  4. Kostianoy AG, Zonn IS, Kostianaia EA (2016) Geographic characteristics of the Black-Caspian seas region. In: Zhiltsov SS, Zonn IS, Kostianoy AG (eds) Oil and gas pipelines in the Black-Caspian seas region. Springer, Cham, pp 7–36. https://doi.org/10.1007/698_2016_462

    Chapter  Google Scholar 

  5. Ersan B, Sivri N, Ugurlu O, Sonmez Z (2018) Potential impacts of oil spill damage around the planned oil rigs at the Black Sea. Indian J Geo Mar Sci 47(11):2098–2206

    Google Scholar 

  6. Black Sea Commission (2019) Krutov A (ed) State of the environment of the Black Sea (2009–2014/5). Publication of the Commission on the Protection of the Black Sea Against Pollution

    Google Scholar 

  7. ITOPF (2021) Oil tanker spill statistics 2020. https://www.itopf.org/knowledge-resources/documents-guides/document/oil-tanker-spill-statistics-2020/. Accessed Jan 2021

  8. Bedritskii AI, Asmus VV, Krovotyntsev VA, Lavrova OY, Ostrovskii AG (2007) Satellite monitoring ofpollution in the Russian sector of the Azov and Black Seas in 2003–2007. Russ Meteorol Hydrol 32:669–674. https://doi.org/10.3103/S1068373907110015

    Article  Google Scholar 

  9. Shcherbak SS, Lavrova OY, Mityagina MI, Bocharova TY, Krovotyntsev VA, Ostrovskii AG (2008) Multi sensor satellite monitoring of seawater state and oil pollution in the northeastern coastal zone of the Black Sea. Int J Remote Sens 29:6331–6345. https://doi.org/10.1080/01431160802175470

    Article  Google Scholar 

  10. Zodiatis G, Lardner R, Solovyov D, Panayidou X, De Dominicis M (2012) Predictions for oil slicks detected from satellite images using MyOcean forecasting data. Ocean Sci 8:1105–1115. https://doi.org/10.5194/os-8-1105-2012

    Article  Google Scholar 

  11. Lavrova OY, Mityagina MI (2013) Satellite monitoring of oil slicks on the Black Sea surface. Izv Atmos OceanPhys 49:897–912. https://doi.org/10.1134/S0001433813090107

    Article  Google Scholar 

  12. Mityagina M, Lavrova O (2016) Satellite survey of inner seas: oil pollution in the Black and Caspian seas. Remote Sens 8(10):875. https://doi.org/10.3390/rs8100875

    Article  Google Scholar 

  13. Ivanov AY, Kucheiko AA (2016) Distribution of oil spills in inland seas based on SAR image analysis: a comparison between the Black Sea and the Caspian Sea. Int J Remote Sens 37(9):2101–2114. https://doi.org/10.1080/01431161.2015.1088677

    Article  Google Scholar 

  14. EMSA (2017) Celebrating the CleanSeaNet service. http://emsa.europa.eu/csn-menu/items.html?cid=122&id=3150

  15. Kostianoy AG, Ginzburg AI, Kopelevich OV, Kudryavtsev VN, Lavrova OY, Lebedev SA, Mitnik LM, Mityagina MI, Smirnov V, Stanichny SV, Troitskaya YI (2018) Ocean remote sensing in Russia. In: Liang S (ed) Comprehensive remote sensing, vol 8. Elsevier, Oxford, pp 284–325. https://doi.org/10.1016/B978-0-12-409548-9.10412-9

    Chapter  Google Scholar 

  16. Demyshev S, Knysh V, Korotaev G, Kubryakov A, Mizyuk A (2010) The MyOcean Black Sea from a scientific point of view. Mercator Ocean Newslett 39:15–24

    Google Scholar 

  17. Pinardi N, Lyubartsev V, Manzella G, Palazov A, Slabakova V, Buga L, Kallos G, Zodiatis G, Stylianou S, Blanc F, Cesarini C (2017) EMODnet Black Sea checkpoint first data adequacy report. Geophysical research abstracts, vol 19, EGU2017-10910, 2017 EGU General Assembly, 23–28 April, 2017, Vienna, Austria, p 10910

    Google Scholar 

  18. Palazov A, Slabakova V, Peneva E, Lyubartsev V, Pinardi N, Blanc F, Moussat E (2020) Sea-basin monitoring system assessment activity to support sustainable growth in the marine and maritime economy. In: Georgiev and Guedes Soares (ed) Sustainable development and innovations in marine technologies. Taylor & Francis Group, London, pp 585–591. https://doi.org/10.1201/9780367810085-77

    Chapter  Google Scholar 

  19. Zodiatis G, De Dominicis M, Perivoliotis L, Radhakrishnan H, Georgoudis E, Sotillo M, Lardner RW, Krokos G, Bruciaferri D, Clementi E, Guarnieri A, Ribotti A, Drago A, Bourma E, Padorno E, Daniel P, Gonzalez G, Chazot C, Gouriou V, Kremer X, Sofianos S, Tintore J, Garreau P, Pinardi N, Coppini G, Lecci R, Pisano A, Sorgente R, Fazioli L, Soloviev D, Stylianou S, Nikolaidis A, Panayidou X, Karaolia A, Gauci A, Marcati A, Caiazzo L, Mancini M (2016) The Mediterranean decision support system for marine safety dedicated to oil slicks predictions. Deep Sea Res II 133:4–20. https://doi.org/10.1016/j.dsr2.2016.07.014

    Article  Google Scholar 

  20. Lardner R, Zodiatis G, Hayes D, Pinardi N (2006) Application of the MEDSLIK oil spill model to the Lebanese spill of July 2016. In: Proceedings of the EGEMP workshop on monitoring activities related to the oil pollution in Lebanon, European Communities, pp 75–78

    Google Scholar 

  21. Coppini G, De Dominicis M, Zodiatis G, Lardner R, Pinardi N, Santoleri R, Colella S, Bignami F, Hayes DR, Soloviev D (2011) Hindcast of oil-spill pollution during the Lebanon crisis in the eastern Mediterranean, July–August2006. Mar Pollut Bull 62:140–153. https://doi.org/10.1016/j.marpolbul.2010.08.021

    Article  Google Scholar 

  22. Lardner RW, Zodiatis G, Loizides L. Demetropoulos A (1998) An operational oil spill model in the Levantine Basin (Eastern Mediterranean Sea). In: International symposium on marine pollution, Monaco, 5–9-October

    Google Scholar 

  23. De Dominicis M, Pinardi N, Zodiatis G, Lardner R (2013a) MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – part 1: theory. Geosci Model Dev 6:1851–1869. https://doi.org/10.5194/gmd-6-1851-2013

    Article  Google Scholar 

  24. Lardner R, Zodiatis G (2017) Modelling oil plumes from subsurface spills. Mar Pollut Bull 124:94–101. https://doi.org/10.1016/j.marpolbul.2017.07.018

    Article  Google Scholar 

  25. Zodiatis G, Lardner R, Alves TM, Krestenitis Y, Perivoliotis L, Sofianos S, Spanoudaki K (2019) Chapter: oil spill forecasting (prediction). In: Pinardi N, Lermusiaux PFJ, Brink KH, Preller RH (eds) The SEA volume 17: the science of ocean predictions. Sears Foundation for Marine Research, Yale University, 953 pp. https://doi.org/10.1357/002224017823523982

    Chapter  Google Scholar 

  26. Zodiatis G, Lardner R, Spanoudaki K, Sofianos K, Radhakrishnan H, Coppini G, Liubartseva S, Kampanis N, Krokos G, Hoteit I, Tintoré J, Eremina T, Drago A (2021) Oil spill modelling assessment. In: Makarynskyy O (ed) Marine hydrocarbon spill assessments. Elsevier (in press)

    Google Scholar 

  27. Tiago AM, Kokinou E, Zodiatis G, Lardner R (2016) Hindcast, GIS and susceptibility modelling to assist oil spill clean-up and mitigation on the southern coast of Cyprus (Eastern Mediterranean). Deep Sea Res II 133:159–175. https://doi.org/10.1016/j.dsr2.2015.07.017

    Article  Google Scholar 

  28. Zodiatis G, Liubartseva S, Loizides L, Pellegatta M, Coppini G, Lardner R, Kallos G, Kalogeri C, Bonarelli R, Sepp Neves AA, Nikolaides P, Brillant A (2020) Evaluation of the Leviathan offshore platform environmental studies in the Eastern Mediterranean Sea. EGU-European Geosciences Union General Assembly 2020-5386, Vienna, 3–8 May

    Google Scholar 

  29. Zodiatis G, Coppini G, Perivoliotis L, Lardner R, Alves T, Pinardi N, Liubartseva S, De Dominicis M, Bourma E, Neves AAS (2017) Numerical modeling of oil pollution in the eastern Mediterranen Sea. In: Oil pollution in the Mediterranean Sea: part I. Springer, pp 215–254. https://doi.org/10.1007/698_2017_131

    Chapter  Google Scholar 

  30. Zhuk E, Khaliulin A, Zodiatis G, Nikolaidis A, Nikolaidis M, Stylianou S, (2017) On-line applications of numerical models in the Black Sea GIS. In: Proc. SPIE 10444, fifth international conference on remote sensing and geoinformation of the environment. https://doi.org/10.1117/12.2279084

  31. De Dominicis M, Pinardi N, Zodiatis G, Archetti R (2013b) MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting – part 2: numerical simulations and validations. Geosci Model Dev 6:1871–1888. https://doi.org/10.5194/gmd-6-1871-2013

    Article  Google Scholar 

  32. Zodiatis G, Lardner R, Hayes D, Georgiou G, Pinardi N, De Dominicis M, Panayidou X (2008) The Mediterranean oil spill and trajectory prediction model in assisting the EU response agencie. In: Congreso Nacional de Salvamento en la Mar, Cadiz, 2–4 October, libro de actas, pp 535–547

    Google Scholar 

  33. Ciliberti SA, Peneva E, Storto A, Kandilarov R, Lecci R, Yang C, Coppini G, Masina S, Pinardi N (2016) Implementation of Black Sea numerical model based on NEMO and 3DVAR data assimilation scheme for operational forecasting, EGU General Assembly 2016, EPSC2016–16222

    Google Scholar 

  34. Liubartseva S, Coppini G, Pinardi N, De Dominicis M, Lecci R, Turrisi G, Cretì S, Martinelli S, Agostini P, Marra P (2016) Decision support system for emergency management of oil spill accidents in the Mediterranean Sea. Nat Hazard Earth Syst Sci 16:2009–2020. https://doi.org/10.5194/nhess-16-2009-2016

    Article  Google Scholar 

  35. SeaTrackWeb (2008) Technical documentation seatrack web: physical processes, numerics, algorithms and references. SMHI

    Google Scholar 

  36. Kubryakov A, Korotaev G, Thoorens F-X, Liungman О, Ambjorn C (2012) New tool for the Black Sea environmental safety: BlackSeaTrack Web. In: European Geosciences Union General Assembly, Vienna, Austria, 22–27 April

    Google Scholar 

  37. Kubryakov A (2012) Identifying sources of pollution in the Black Sea, MyOcean Success Book

    Google Scholar 

  38. Atodiresei D, Scurtu IC, Nikolae F, Serban PS (2016) Fast meteorological forecasting method for chemical spill in the Black Sea. In: International conference knowledge based organization, vol XXII, no. 3. DE Gruyter, pp 584–590. https://doi.org/10.1515/kbo-2016-0101

    Chapter  Google Scholar 

  39. Daniel P (1996) Operational forecasting of oil spill drift at Météo-France. Pract Appl Eng 3:53–64. https://doi.org/10.1016/S1353-2561(96)00030-8

    Article  Google Scholar 

  40. Daniel P, Jan G, Cabioc’h F, Landau Y, Loiseau E (2002) Drift modeling of cargo containers. Spill Sci Technol Bull 7:279–288. https://doi.org/10.1016/S1353-2561(02)00075-0

    Article  Google Scholar 

  41. Daniel P, Marty F, Josse P, Skandrani C, Benshila R (2003) Improvement of drift calculation in MOTHY operational oil spill prediction system. In: Proceedings of international oil spill conference, pp 1067–1072

    Google Scholar 

  42. Daniel P, Josse P, Dandin P (2005) Further improvement of drift forecast at sea based on operational oceanography systems. WIT Trans Built Environ 78. https://doi.org/10.2495/CE050021

  43. Daniel P (2010) Drift forecasts for the Erika and Prestige oil spills. Pract Appl Eng 4:301–308. https://doi.org/10.1002/9781118557792.ch27

    Article  Google Scholar 

  44. Daniel P, Josse P, Dandin P, Lefevre J-M, Lery G, Cabioch F, Gouriou V (2004) Forecasting the prestige oil spills. In: Proceedings of the Interspill 2004 conference, Trondheim, Norway

    Google Scholar 

  45. Poon YK, Madsen OS (1991) A two-layer wind-driven coastal circulation model. J Geophys Res 96(C2):2535–2548. https://doi.org/10.1029/90JC02286

    Article  Google Scholar 

  46. Elliott AJ (1986) Shear diffusion and the spread of oil in the surface layers of the North Sea. Dtsch Hydrogr Z 39:113–137. https://doi.org/10.1007/BF02408134

    Article  Google Scholar 

  47. Comerma E, Espino M, Daniel P, Doré A, Cabioch F (2002) An update of an oil spill model and its application in the Bay of Biscay: the weathering process. WIT Trans Ecol Environ 59. https://doi.org/10.2495/OIL020021

  48. Daniel P, Mungov G, Kortchev G (1995) Numerical modeling of dispersion if pollutant in the coastal zone of the western Black Sea. IAEA-SM-354/27P, 332–333

    Google Scholar 

  49. Kordzadze A, Demetrashvili D (2018) Pollution of the Black Sea by oil products. Its monitoring and forecasting. Physics of solid earth, atmosphere, ocean and space plasma. J Georgian Geophys Soc 21(2):47–60

    Google Scholar 

  50. Kortcheva A, Galabov V, Marinski J, Andrea V, Stylios C (2018) New approaches and mathematical models for environmental risk management in seaports. IFAC PapersOnLine, pp 366–371. https://doi.org/10.1016/j.ifacol.2018.11.333

    Book  Google Scholar 

  51. Galabov V (2011) Oil spill drift operational forecasts for Bulgarian coastal area and numerical study of potential oil; pollution in the bay of Burgas. In: Abstracts of 3rd bi-annual Black Sea Scientific Conference and UP-GRADE BS-SCENE Project joint Conference, Odessa, Ukraine

    Google Scholar 

  52. Galabov V, Kortcheva A, Kortchev G, Marinski J (2013) Contamination of Bourgas Port waters with oil. In: Proceedings of the global congress on ICM, Marmaris, Turkey 1077–1086

    Google Scholar 

  53. Brovchenko I, Kuschan A, Maderich V, Shliakhtun M, Yuschenko S, Zheleznyak M (2002) The modelling system for simulation of the oil spills in the Black Sea. In: 3rd EuroGOOS conference: building the European capacity in operational oceanography

    Google Scholar 

  54. Brovchenko I, Maderich V (2002) Numerical Lagrangian method for the modelling of the surface oil slick. Appl Hydromech 4(76):23–31

    Google Scholar 

  55. Reed M, Johansen Ø, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modelling toward the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5:3. https://doi.org/10.1016/S1353-2561(98)00029-2

    Article  Google Scholar 

  56. Spaulding ML, Howlett E, Anderson E, Jayko K (1992) OILMAP: a global approach to spill modeling (No. EC/EPS–93-01710)

    Google Scholar 

  57. Spaulding M, Kolluru V, Anderson E, Howlett E (1994) Application of three-dimensional oil spill model (wosm/oilmap) to Hindcast the Braer spill. Spill Sci Technol Bull 1(1):23–35. https://doi.org/10.1016/1353-2561(94)90005-1

    Article  Google Scholar 

  58. Toz AC, Buber M (2018) Performance evaluation of oil spill software systems in early fate and trajectory of oil spill: comparison analysis of OILMAP and PISCES 2 in Mersin bay spill. Environ Monit Assess 190(9):551. https://doi.org/10.1007/s10661-018-6872-3

    Article  Google Scholar 

  59. Howlett E, Jayko K, Isaji T, Anid P, Mocke G, Smit F (2008) Marine forecasting and oil spill modeling in Dubai and the Gulf region. Dubai, COPEDEC 7

    Google Scholar 

  60. Rezki CT, Soesilo TEB, Herdiansyah H, Syahnoedi U (2018) Integrated hydrodynamic and oil spill modeling using OILMAP software for environment protection of oil spill in cilacap regency. E3S Web Conf 73:03028

    Google Scholar 

  61. Toz AC (2017) Modelling oil spill around Bay of Samsun, Turkey, with the use of OILMAP and ADIOS software systems. Pol Marit Res 24(3):115–125. https://doi.org/10.1515/pomr-2017-0096

    Article  Google Scholar 

  62. Reed M, Turner C, Odulo A (1994) The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci Technol Bull 1(2):143–157. https://doi.org/10.1016/1353-2561(94)90022-1

    Article  Google Scholar 

  63. Reed M, Daling P, Brakstad O, Singsaas I, Faksness L, Hetland B, Ekrol N (2000) Oscar: a multi-component 3-dimensional oil spill contingencyand response model. In: Proceedings of the arctic and marine oil spill program (AMOP) technical seminar, Vancouver, CA, pp 663–680

    Google Scholar 

  64. Zhong X, Niu H, Wu Y, Hannah C, Li S, King T (2018) A modeling study on the oil spill of M/V Marathassa in Vancouver harbour. J Mar Sci Eng 6(3):106. https://doi.org/10.3390/jmse6030106

    Article  Google Scholar 

  65. Nordam T, Beegle-Krause CJ, Skancke J, Nepstad R, Reed M (2019) Improving oil spill trajectory modelling in the Arctic. Mar Pollut Bull 140:65–74. https://doi.org/10.1016/j.marpolbul.2019.01.019

    Article  Google Scholar 

  66. Nordam T, Litzler E, Rønningen P, Aune J, Hagelien TF, Beegle-Krause CJ, Brönner U (2018) Oil spill contingency and response modelling in ice-covered waters. In: Proceedings of the forty-first AMOP technical seminar, Environment and Climate Change Canada Ottawa, ON, Canada

    Google Scholar 

  67. Aamo OM, Reed M, Downing K (1997) Oil spill contingency and response (OSCAR) model system: sensitivity studies. Int Oil Spill Conf 1997(1):429–438

    Google Scholar 

  68. Reed M, French D, Rines H, Rye H (2005) A three-dimensional oil and chemical spill model for environmental impact assessment. Int Oil Spill Conf 2005:8394–8410.69

    Google Scholar 

  69. Aamo OM, Reed M, Daling PS (1993) A laboratory-based weathering model: PC version for coupling to transport models (No. EC/TDTS--94-02286-VOL. 1–2)

    Google Scholar 

  70. Daling PS, Brandvik PJ, Mackay D, Johansen O (1990) Characterization of crude oils for environmental purposes. Oil Chem Pollut 7(3):199–224. https://doi.org/10.1016/S0269-8579(05)80027-9

    Article  Google Scholar 

  71. Daling PS, Brandvik PJ (1991) Characterization and prediction of the weathering properties of oils at sea-a manual for the oils investigated in the DIWO project. Institutt for Kontinentalundersoekelserog Petroleumsteknologi A/S

    Google Scholar 

  72. Reed M, Aamo OM, Daling PS (1995) Quantitative analysis of alternate oil spill response strategies using Oscar. Spill Sci Technol Bull 2(1):67–74. https://doi.org/10.1016/1353-2561(95)00020-5

    Article  Google Scholar 

  73. Daling PS, StrØm T (1999) Weathering of oils at sea: model/field data comparisons. Spill Sci Technol Bull 5(1):63–74. https://doi.org/10.1016/S1353-2561(98)00051-6

    Article  Google Scholar 

  74. Reed M, Rønningen P (2014) The OSCAR model. SINTEF

    Google Scholar 

  75. Abascal AJ, Castanedo S, Medina R, Liste M (2010) Analysis of the reliability of a statistical oil spill response model. Mar Pollut Bull 60(11):2099–2110. https://doi.org/10.1016/j.marpolbul.2010.07.008

    Article  Google Scholar 

  76. Ivanov AY (2010) The oil spill from a shipwreck in Kerch Strait: radar monitoring and numerical modelling. Int J Remote Sens 31:4853–4868. https://doi.org/10.1080/01431161.2010.485215

    Article  Google Scholar 

  77. Ovsienko SN, Fashchuck DJ, Zatsepa SN, Ivchenko AA, Petrenko OA (2008) Storm of 11 November, 2007 in the Srait of Kerch: chronology of events, mathematical modeling and geographic/ecological analysis of oil spill. Proc State Oceanogr Inst 211:307–339. (in Russian)

    Google Scholar 

  78. Ivanov VA, Shapiro NB (2004) Modelling the currents in the Kerch Strait. In: Ecological safety of the coastal and shelf zones and complex utilization of the shelf resources, vol 10. Marine Hydrophysical Institute, pp 207–233 (in Russian)

    Google Scholar 

  79. Mackay D, Buist IA, Mascarenhas R, Paterson S (1980) Oil spill processes and models: environment Canada manuscript report no. 8, Ottawa

    Google Scholar 

  80. Mackay D, Paterson S, Trudel K (1980) A mathematical model of oil spill behaviour. Report to Research and Development Division, Environment Emergency Branch, Environmental Impact Control Directorate; Ottawa

    Google Scholar 

  81. Mackay D, Shiu WY, Hossain K, Stiver W, McCurdy D (1982) Development and calibration of an oil spill behavior model; Toronto Univ (ONTARIO) Dept of Chemical Engineering and Applied Chemistry

    Google Scholar 

  82. Fingas M (1998) The evaporation of oil spills: development and implementation of new prediction methodology. Marine Environmental Modeling Seminar ’98, Lillehammer, Norway

    Google Scholar 

  83. Tkalich P, Chan ES (2002) Vertical mixing of oil droplets by breaking waves. Mar Pollut Bull 44(11):1219–1229. https://doi.org/10.1016/S0025-326X(02)00178-9

    Article  Google Scholar 

  84. Johansen Ø, Reed M, Bodsberg NR (2015) Natural dispersion revisited. Mar Pollut Bull 93:20–26. https://doi.org/10.1016/j.marpolbul.2015.02.026

    Article  Google Scholar 

  85. Spanoudaki K (2016) Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets. Geophys Res Abstr 18:EGU2016-13155

    Google Scholar 

  86. Zodiatis G, Lardner R, Spanoudaki K, Sofianos S, Radhakrishnan H, Coppini G, Liubartseva S, Kampanis N, Krokos G, Hoteit I, Tintoré J, Eremina T, Drago A (2021) Oil spill modelling assessment. In: Makarinskyy O (ed) Marine hydrocarbon spill assessments. Elsevier (in press)

    Google Scholar 

  87. Zodiatis G, Lardner R, Nikolaidis A, Stylianou S, Panayidou X, Hayes D, Galanis G, Georgiou G (2014) MyOcean products in the CYCOFOS and LEV decision support system for marine safety. In: Proceedings of the 6th EuroGOOS international conference: sustainable operational oceanography. EuroGOOS Publication no.30, pp 290–299

    Google Scholar 

  88. Keramea P, Spanoudaki K, Zodiatis G, Gikas G, Sylaios G (2021) Oil spill modeling: a critical review on current trends, perspectives and challenges. J Mar Sci Eng 9:181. https://doi.org/10.3390/jmse9020181

    Article  Google Scholar 

  89. Korotenko K (2016) High resolution numerical model for predicting the transport and dispersal of oil spill in results of accidental deepwater blowout in the Black Sea. In: Proceedings of the twenty–sixth international ocean and polar engineering conference, Rhodes, Greece, June 26–July 1, pp 1534–1541

    Google Scholar 

  90. Korotenko K, Bowman M, Dietrich D (2010) High-resolution model for predicting the transport and dispersal of oil plumes resulting from accidental discharges in the Black Sea. Terr Atmos Ocean Sci 21(1):123–136. https://doi.org/10.3319/TAO.2009.04.24.01

    Article  Google Scholar 

  91. Dietrich DE, Lin CA, Mestas-Nunez A, Ko DS (1997) A high resolution numerical study of Gulf of Mexico fronts and eddies, meteorology and atmospheric. Physics 64:187–201. https://doi.org/10.1007/BF01029692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zodiatis, G. et al. (2021). Numerical Models for Oil Spillages in the Black Sea and the Adjacent Sea of Azov. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2021_815

Download citation

  • DOI: https://doi.org/10.1007/698_2021_815

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics