Skip to main content

Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 25))

Abstract

Alkynones and chalcones are of paramount importance in heterocyclic chemistry as three-carbon building blocks. In a very efficient manner, they can be easily generated by palladium-copper catalyzed reactions: ynones are formed from acid chlorides and terminal alkynes, and chalcones are synthesized in the sense of a coupling-isomerization (CI) sequence from (hetero)aryl halides and propargyl alcohols. Mild reaction conditions now open entries to sequential and consecutive transformations to heterocycles, such as furans, 3-halo furans, pyrroles, pyrazoles, substituted and annelated pyridines, annelated thiopyranones, pyridimines, meridianins, benzoheteroazepines and tetrahydro-β-carbolines, by consecutive coupling-cyclocondensation or CI-cyclocondensation sequences, as new diversity oriented routes to heterocycles. Domino reactions based upon the coupling-isomerization reaction (CIR) have been probed in the synthesis of antiparasital 2-substituted quinoline derivatives and highly luminescent spiro-benzofuranones and spiro-indolones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

AcO:

Acetyloxy

atm:

Atmosphere [bar]

Boc:

Tert-butyloxycarbonyl

Bu:

Butyl

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

Δ:

Heating

DBU:

Diazabicyclo[5.4.0]undecene

DFT:

Density functional theory

DMF:

N,N-dimethylformamide

DME:

1,2-Dimethoxyethane

equiv:

Equivalent(s)

EWG:

Electron-withdrawing group

Et:

Ethyl

GC-MS:

Gas chromatography-mass spectrometry

Hal:

Halogen

HIV:

Human immunodeficiency virus

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl-CoA

kobs :

Observed rate constant

L:

Ligand

LUMO:

Lowest unoccupied molecular orbital

MCR:

Multicomponent reaction

Me:

Methyl

MW:

(Heated in a) microwave (oven)

nCR:

n-Component reaction

NMP:

N-Methylpyrrolidone

Nu:

Nucleophile

OLED:

Organic light emitting diode

π:

Conjugated π-electron system

Ph:

Phenyl

Pr:

Propyl

PTSA:

p-Toluenesulfonic acid

R:

Organic substituent

r.t.:

Room temperature (20°C)

THF:

Tetrahydrofuran

THP:

Tetrahydropyranyl

TLC:

Thin layer chromatography

TBDMS:

Tert-butyldimethylsilyl

Tos:

p-Tolylsulfonyl

TMS:

Trimethylsilyl

UV:

Ultraviolet

vis:

Visible

References

  1. Wender PA, Handy ST, Wright DL (1997) Towards the ideal synthesis. Chem Ind 765:767–769

    Google Scholar 

  2. Jung G (ed) (1999) Combinatorial chemistry – synthesis, analysis, screening. Wiley-VCH, Weinheim

    Google Scholar 

  3. Balkenhohl F, von dem Bussche-Hünnefeld C, Lansky A, Zechel C (1996) Combinatorial synthesis of small organic molecules. Angew Chem Int Ed Engl 35:2288–2337

    CAS  Google Scholar 

  4. Zhu J, Bienaymé H (eds) (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  5. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15:1300–1308

    CAS  Google Scholar 

  6. Isambert N, Lavilla R (2008) Heterocycles as key substrates in multicomponent reactions: the fast lane towards molecular complexity. Chem Eur J 14:8444–8454

    CAS  Google Scholar 

  7. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89

    Google Scholar 

  8. Orru RVA, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocycles. Synthesis 10:1471–1499

    Google Scholar 

  9. Bienaymé H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6:3321–3329

    Google Scholar 

  10. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed Engl 39:3168–3210

    Google Scholar 

  11. Ugi I, Dömling A, Werner B (2000) Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry. J Heterocycl Chem 37:647–658

    CAS  Google Scholar 

  12. Weber L, Illgen K, Almstetter M (1999) Discovery of New Multi Component Reactions with Combinatorial Methods. Synlett 366–374

    Google Scholar 

  13. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res 29:123–131

    CAS  Google Scholar 

  14. Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18:115–122

    CAS  Google Scholar 

  15. Posner GH (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem Rev 86:831–844

    CAS  Google Scholar 

  16. Schreiber SL, Burke MD (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58

    Google Scholar 

  17. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302:613–618

    CAS  Google Scholar 

  18. Arya P, Chou DTH, Baek MG (2001) Diversity-based organic synthesis in the era of genomics and proteomics. Angew Chem Int Ed 40:339–346

    CAS  Google Scholar 

  19. Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DVS, Lewis JA, Mander TH, Merritt AT, Valler MJ, Watson SP (2000) Application of high-throughput screening techniques to drug discovery. Prog Med Chem 37:83–133

    CAS  Google Scholar 

  20. Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    CAS  Google Scholar 

  21. Müller TJJ (2007) Diversity-oriented synthesis of chromophores by combinatorial strategies and multi-component reactions. In: Müller TJJ, Bunz UHF (eds) Functional organic materials. Syntheses, strategies, and applications. Wiley-VCH GmbH & KGaA, Weinheim, pp 179–223

    Google Scholar 

  22. Müller TJJ, D’Souza DM (2008) Diversity oriented syntheses of functional π-systems by multi-component and domino reactions. Pure Appl Chem 80:609–620

    Google Scholar 

  23. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  24. Tietze LF (1990) Domino-reactions – the Tandem-Knoevenagel-Hetero-Diels-Alder reaction and its application in natural product synthesis. J Heterocycl Chem 27:47–69

    CAS  Google Scholar 

  25. Tietze LF, Beifuss U (1993) Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew Chem Int Ed Engl 32:131–163

    Google Scholar 

  26. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136

    CAS  Google Scholar 

  27. de Meijere A, Diederich F (eds) (2004) Metal-catalyzed cross-coupling reactions, metal catalyzed cross-coupling reactions. Wiley-VCH, Weinheim

    Google Scholar 

  28. D’Souza DM, Müller TJJ (2007) Multi-component syntheses of heterocycles by transition metal catalysis. Chem Soc Rev 36:1095–1108

    Google Scholar 

  29. Balme G, Bossharth E, Monteiro N (2003) Pd-assisted multicomponent synthesis of heterocycles. Eur J Org Chem 4101–4111

    Google Scholar 

  30. Battistuzzi G, Cacchi S, Fabrizi G (2002) The aminopalladation/reductive elimination domino reaction in the construction of functionalized indole rings. Eur J Org Chem 2671–2681

    Google Scholar 

  31. Müller TJJ (2006) Sequentially palladium-catalyzed processes. In: Müller TJJ (ed) Metal catalyzed cascade reactions. Topics in Organometallic Chemistry, vol 19. Springer, Berlin/Heidelberg, pp 149–205

    Google Scholar 

  32. Bol’shedvorskaya RA, Vereshchagin LI (1973) Advanced chemistry of α-acetylenic ketones. Russ Chem Rev 42:225–240

    Google Scholar 

  33. Thebtaranonth C, Thebtaranonth Y (1989) Synthesis of enones. In: Patai S, Rappoport Z (eds) The chemistry of enones, vol 29. Wiley, Chichester, pp 199–280

    Google Scholar 

  34. Nelson A (2005) Product class 7: ynones. In: Cossy J (ed) Science of synthesis, vol 26. Georg Thieme, Stuttgart, pp 971–988

    Google Scholar 

  35. Takahashi S, Kuroyama Y, Sonogashira K, Hagihara N (1980) A convenient synthesis of ethynylarenes and diethynylarenes. Synthesis 627–630

    Google Scholar 

  36. Sonogashira K (2002) Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J Organomet Chem 653(1–2):46–49

    CAS  Google Scholar 

  37. Negishi EI, Anastasia L (2003) Palladium-catalyzed alkynylation. Chem Rev 103:1979–2018

    CAS  Google Scholar 

  38. Marsden JA, Haley MM (2004) Cross-coupling reactions to sp carbon atoms. In: de Meijere A, Diederich F (eds) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, pp 319–345

    Google Scholar 

  39. Doucet H, Hierso JC (2007) Palladium-based catalytic systems for the synthesis of conjugated enynes by sonogashira reactions and related alkynylations. Angew Chem Int Ed 46:834–871

    CAS  Google Scholar 

  40. Yin L, Liebscher J (2007) Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    CAS  Google Scholar 

  41. Müller TJJ, Robert JP, Schmälzlin E, Bräuchle C, Meerholz K (2000) A straightforward modular approach to NLO-active β-amino vinyl nitrothiophenes. Org Lett 2:2419–2422

    Google Scholar 

  42. Wu IY, Lin JT, Li CS, Wang WC, Huang TH, Wen YS, Chow T, Tsai C (1999) Preparation of push-pull type chromophores via nitrothiophene induced Michael type reaction of alkynes. Tetrahedron 55:13973–13982

    CAS  Google Scholar 

  43. Karpov AS, Rominger F, Müller TJJ (2003) Facile one-pot coupling-aminovinylation approach to push-pull chromophores – alkyne activation by sonogashira-coupling. J Org Chem 68:1503–1511

    CAS  Google Scholar 

  44. Tohda Y, Sonogashira K, Hagihara N (1977) A convenient synthesis of 1-alkynyl ketones and 2-alkynamides. Synthesis 777–778

    Google Scholar 

  45. Nielsen TE, Cubillo de Dios MA, Tanner D (2002) Highly stereoselective addition of stannylcuprates to alkynones. J Org Chem 67:7309–7313

    CAS  Google Scholar 

  46. Alonso DA, Najera C, Pacheco MC (2004) Synthesis of ynones by palladium-catalyzed acylation of terminal alkynes with acid chlorides. J Org Chem 69:1615–1619

    CAS  Google Scholar 

  47. D’Souza DM, Müller TJJ (2008) Catalytic alkynone generation by Sonogashira reaction and its application in three-component pyrimidine synthesis. Nat Protoc 3:1660–1665

    Google Scholar 

  48. Karpov AS, Müller TJJ (2003) A new entry to a three component pyrimidine synthesis by TMS-ynones via sonogashira-coupling. Org Lett 5:3451–3454

    CAS  Google Scholar 

  49. Miller RD, Reiser O (1993) The synthesis of electron donor-acceptor-substituted pyrazoles. J Heterocycl Chem 30:755–763

    CAS  Google Scholar 

  50. Logue MW, Teng K (1982) Palladium-catalyzed reactions of acyl chlorides with (1-alkynyl)tributylstannanes. A convenient synthesis for 1-alkynyl ketones. J Org Chem 47:2549–2553

    CAS  Google Scholar 

  51. Sashida H (1998) An alternative facile preparation of telluro- and selenochromones from o-bromophenyl ethynyl ketones. Synthesis 745–748

    Google Scholar 

  52. Quintanilla-Licea R, Teuber HJ (2001) Review on reactions of acetylacetaldehyde with aromatic and biogenic amines and indoles-synthesis of heterocycles via hydroxymethylene ketones. Heterocycles 55:1365–1397

    CAS  Google Scholar 

  53. Eicher T, Hauptmann S (1994) Chemie der Heterocyclen. Georg Thieme, Stuttgart

    Google Scholar 

  54. Gilchrist TL (1992) Heterocyclic chemistry. Longman Scientific and Technical, Essex

    Google Scholar 

  55. Takazawa O, Mukaiyama T (1982) New synthesis of β-keto acetals. Chem Lett 1307–1308

    Google Scholar 

  56. Mukaiyama T, Hayashi M (1974) New syntheses of β-alkoxy ketones and b-keto acetals. Chem Lett 15

    Google Scholar 

  57. Clerici A, Pastori N, Porta O (2001) Mild acetalisation of mono and dicarbonyl compounds catalysed by titanium tetrachloride. Facile synthesis of β-keto enol ethers. Tetrahedron 57:217–225

    CAS  Google Scholar 

  58. Effenberger F, Maier R, Schoenwaelder KH, Ziegler T (1982) Enolether, XIII. Die Acylierung von Enolethern mit reaktiven Carbonsäurechloriden. Chem Ber 115:2766

    CAS  Google Scholar 

  59. Smirnova YV, Krasnaya ZA (2000) Methods of the synthesis of conjugated omega-amino ketone. Russ Chem Rev 69:1021–1036

    CAS  Google Scholar 

  60. Michael JP, De Koning CB, Gravestock D, Hosken GD, Howard AS, Jungmann CM, Krause RWM, Parsons AS, Pelly SC, Stanbury TV (1999) Enaminones: versatile intermediates for natural product synthesis. Pure Appl Chem 71:979–988

    CAS  Google Scholar 

  61. Lue P, Greenhill JV (1997) Enaminones in heterocyclic synthesis. Adv Heterocycl Chem 67:207–343

    Google Scholar 

  62. Michael JP, Gravestock D (1997) Enaminones as intermediates in the synthesis of indolizidine alkaloids. Pure Appl Chem 69:583–588

    CAS  Google Scholar 

  63. Kuckländer U (1994) Enaminones as synthones. In: Rappoport Z (ed) Chemistry of enamines. In: Patai S, Rappoport Z (series eds) The chemistry of functional groups. Wiley, Chichester, pp 523–636

    Google Scholar 

  64. Greenhill JV (1977) Enaminones. Chem Soc Rev 6:277–294

    CAS  Google Scholar 

  65. Bromidge SM, Entwistle DA, Goldstein J, Orlek BS (1993) A convenient synthesis of masked β-ketoaldehydes by the controlled addition of nucleophiles to (trimethylsilyl)ethynyl ketones. Synth Commun 23:487–494

    CAS  Google Scholar 

  66. Tripathi VK, Venkataramani PS, Mehta G (1979) Addition of nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to aryl ethynyl ketones. J Chem Soc Perkin Trans 1:36–41

    Google Scholar 

  67. Venkataramani PS, Saxena NK, Tripathi VK, Mehta G (1975) Nucleophilic addition to ethynyl aryl ketones – stereospecific route to disubstituted enol ethers. Indian J Chem 13:852–854

    CAS  Google Scholar 

  68. Gais HJ, Hafner K, Neuenschwander M (1969) Acetylene mit Elektronendonator und Elektronenakzeptorgruppen. Helv Chim Acta 52:2641–2657

    CAS  Google Scholar 

  69. Karpov AS, Müller TJJ (2003) Straightforward novel one-pot enaminone and pyrimidine syntheses by coupling-addition-cyclocondensation sequences. Synthesis 2815–2826

    Google Scholar 

  70. Karpov AS, Oeser T, Müller TJJ (2004) A novel one-pot four-component access to tetrahydro-β-carbolines by a coupling-amination-aza-annulation-Pictet-Spengler sequence (CAAPS). Chem Commun 1502–1503

    Google Scholar 

  71. Eddington ND, Cox DS, Roberts RR, Butcher RJ, Edafiogho IO, Stables JP, Cooke N, Goodwin AM, Smith CA, Scott KR (2002) Synthesis and anticonvulsant activity of enaminones. 4. Investigations on isoxazole derivatives. Eur J Med Chem 37:635–648

    CAS  Google Scholar 

  72. Eddington ND, Cox DS, Roberts RR, Stables JP, Powell CB, Scott KR (2000) Enaminones-versatile therapeutic pharmacophores. Further advances. Curr Med Chem 7:417–436

    CAS  Google Scholar 

  73. Scott KR, Rankin GO, Stables JP, Alexander MS, Edafiogho IO, Farrar VA, Kolen KR, Moore JA, Sims LD, Tonnut AD (1995) Synthesis and anticonvulsant activity of enaminones 3. Investigations on 4′-substituted, 3′-substituted, and 2′-substituted and polysubstituted anilino compounds, sodium channel binding studies, and toxicity evaluations. J Med Chem 38:4033–4043

    CAS  Google Scholar 

  74. Edafiogho IO, Alexander MS, Moore JA, Farrar VA, Scott KR (1994) Anticonvulsant enaminones: with emphasis on methyl 4-[(p-chlorophenyl)amino]-6-methyl-2-oxocyclohex-3-en-1-oate (ADD 196022). Curr Med Chem 1:159–175

    CAS  Google Scholar 

  75. Dannhardt G, Bauer A, Nowe U (1997) Non-steroidal anti-inflammatory agents.24. Pyrrolidino enaminones as models to mimic arachidonic acid. Arch Pharm 330:74–82

    CAS  Google Scholar 

  76. Negishi EI, Copéret C, Ma S, Liou SY, Liu F (1996) Cyclic carbopalladation. A versatile synthetic methodology for the construction of cyclic organic compounds. Chem Rev 96:365–393

    CAS  Google Scholar 

  77. Müller TJJ, Ansorge M, Aktah D (2000) An unexpected coupling-isomerization. Sequence as an entry to novel three-component-pyrazoline syntheses. Angew Chem Int Ed 39:1253–1256

    Google Scholar 

  78. Braun RU, Ansorge M, Müller TJJ (2006) The coupling-isomerization synthesis of chalcones. Chem Eur J 12:9081–9094

    CAS  Google Scholar 

  79. Minn, K (1991) Chalcones via a palladium-catalyzed coupling of iodoheterocycles to 1-phenyl-2-propyn-1-ol. Synlett 115–116

    Google Scholar 

  80. Kundu NG, Das P (1995) Palladium-catalysed synthesis of 6-(2-acylvinyl)uracils, a group of novel 6-substituted uracils of biological significance. J Chem Soc Chem Commun 99–100

    Google Scholar 

  81. Das P, Kundu NG (1996) Preparation of 6-iodo-N1,N3-dimethyluracil and 6-(2-acylvinyl)-N1,N3-dimethyluracils: the correction of a mistake and an improved synthesis. J Chem Res (S) 298–299

    Google Scholar 

  82. Schramm née Dediu OG, Müller TJJ (2006) Microwave-accelerated coupling-isomerization reaction (MACIR) – a general coupling-isomerization synthesis of 1,3-diarylprop-2-en-1-ones. Adv Synth Cat 348:2565–2570

    Google Scholar 

  83. Braun RU, Müller TJJM (2003) Coupling-isomerization-coupling sequences switched on by propargyl alcohol-enone-isomerization. Mol Divers 6:251–259

    CAS  Google Scholar 

  84. Liao WW, Müller TJJ (2006) Sequential coupling-isomerization-coupling reactions – a novel three-component synthesis of aryl-chalcones. Synlett 3469–3473

    Google Scholar 

  85. Dediu OG, Yehia NAM, Müller TJJ (2004) The coupling-isomerization approach to enimines and the first sequential three-component access to 2-ethoxy pyridines. Z Naturforsch 59b:443–450

    Google Scholar 

  86. Müller TJJ (2006) Multi-component syntheses of heterocycles by virtue of palladium catalyzed generation of alkynones and chalcones. Targets Heterocycl Syst 10:54–65

    Google Scholar 

  87. Rowley M, Broughton HB, Collins I, Baker R, Emms F, Marwood R, Patel S, Ragan CI (1996) 5-(4-Chlorophenyl)-4-methyl-3-(1-(2-phenylethyl)piperidin-4-yl)isoxazole: a potent, selective antagonist at human cloned dopamine D4 receptors. J Med Chem 39:1943–1945

    CAS  Google Scholar 

  88. Frolund B, Jorgensen AT, Tagmose L, Stensbol TB, Vestergaard HT, Engblom C, Kristiansen U, Sanchez C, Krogsgaard-Larsen P, Liljefors T (2002) Novel class of potent 4-arylalkyl substituted 3-isoxazolol GABA(A) antagonists: synthesis, pharmacology, and molecular modeling. J Med Chem 45:2454–2468

    CAS  Google Scholar 

  89. Daidone G, Raffa D, Maggio B, Plescia F, Cutuli VMC, Mangano NG, Caruso A (1999) Synthesis and pharmacological activities of novel 3-(isoxazol-3-yl)-quinazolin-4(3H)-one derivatives. Arch Pharm Pharm Med Chem 332:50–54

    CAS  Google Scholar 

  90. Talley JJ (1999) Selective inhibitors of cyclooxygenase-2 (COX-2). Prog Med Chem 13:201–234

    Google Scholar 

  91. Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Perkins WE, Rogers RS, Shaffer AF, Zhang YY, Zweifel BS, Seibert K (2000) 4-[5-methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, valdecoxib: a potent and selective inhibitor of COX-2. J Med Chem 43:775–777

    CAS  Google Scholar 

  92. Giovannoni MP, Vergelli C, Ghelardini C, Galeotti N, Bartolini A, Kal Piaz V (2003) (3-Chlorophenyl)piperazinylpropyl]pyridazinones and analogues as potent antinociceptive agents. J Med Chem 46:1055–1059

    CAS  Google Scholar 

  93. Li WT, Hwang DR, Chen CP, Shen CW, Huang CL, Chen TW, Lin CH, Chang YL, Chang YY, Lo YK, Tseng HY, Lin CC, Song JS, Chen HC, Chen SJ, Wu SH, Chen CT (2003) Synthesis and biological evaluation of N-heterocyclic indolyl glyoxylamides as orally active anticancer agents. J Med Chem 46:1706–1715

    CAS  Google Scholar 

  94. Bowden K, Jones ERH (1946) Acetylenic compounds. IX. Heterocyclic compounds derived from ethynyl ketones. J Chem Soc 25:953–954

    Google Scholar 

  95. Adlington RM, Baldwin JE, Catterick D, Pritchard GJ, Tang LT (2000) The synthesis of novel heterocyclic substituted alpha-amino acids; further exploitation of alpha-amino acid alkynyl ketones. J Chem Soc Perkin Trans 1:303–305

    Google Scholar 

  96. Denmark SE, Kallemeyn JM (2005) Synthesis of 3,4,5-trisubstituted isoxazoles via sequential [3+2] cycloaddition/silicon-based cross-coupling reactions. J Org Chem 70:2839–2842

    CAS  Google Scholar 

  97. Jäger V, Colinas PA (2002) Nitrile oxides. In: Padwa A, Pearson WH (eds) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products; chemistry of heterocyclic compounds, vol 59. Wiley, Hoboken, pp 361–472

    Google Scholar 

  98. Willy B, Rominger F, Müller TJJ (2008) Novel microwave-assisted one-pot synthesis of isoxazoles by a three-component coupling-cycloaddition sequence. Synthesis 293–303

    Google Scholar 

  99. Willy B, Frank W, Rominger F, Müller TJJ (2009) One-pot three-component synthesis, structure and redox properties of ferrocenyl isoxazoles. J Organomet Chem 694:942–949

    CAS  Google Scholar 

  100. Swinbourne FJ, Hunt JH, Klinker G (1978) Advances in indolizine chemistry. In: Katritzky AR, Boulton AJ (eds) Advances in Heterocyclic Chemistry, vol 23. Academic, New York, pp 103–170

    Google Scholar 

  101. Vlahovici A, Andrei M, Druta I (2002) A study of the dimethyl 3-benzoyl-5(2’-pyridyl)-indolisine-1,2-dicarboxylate exciplexes with alcohols. J Lumin 96:279–285

    CAS  Google Scholar 

  102. Vlahovici A, Druta I, Andrei M, Cotlet M, Dinica R (1999) Photophysics of some indolizines, derivatives from bipyridyl, in various media. J Lumin 82:155–162

    CAS  Google Scholar 

  103. Sonnenschein H, Hennrich G, Resch-Genger U, Schulz B (2000) Fluorescence and UV/Vis spectroscopic behaviour of novel biindolizines. Dyes Pigm 46:23–27

    CAS  Google Scholar 

  104. Padwa A (1984) 1,3-dipolar cycloaddition chemistry. Wiley, New York

    Google Scholar 

  105. Broggini G, Zecchi G (1999) Pyrrolizidine and indolizidine syntheses involving 1,3-dipolar cycloadditions. Synthesis 905–917

    Google Scholar 

  106. Nájera C, Sansano JM (2003) Azomethine ylides in organic synthesis. Curr Org Chem 7:1105–1150

    Google Scholar 

  107. Padwa A, Austin DJ, Precedo L, Zhi L (1993) Cycloaddition reactions of pyridinium and related azomethine ylides. J Org Chem 58:1144–1150

    CAS  Google Scholar 

  108. Rotaru AV, Druta ID, Oeser T, Müller TJJ (2005) A novel coupling 1, 3-dipolar cycloaddition sequence as a three-component approach to highly fluorescent indolizines. Helv Chim Acta 88:1798–1812

    Google Scholar 

  109. Claisen L (1903) To the knowledge of the propargylaldehydes and the phenylpropargylaldehydes. Ber Dtsch Chem Ges 36:3664–3673

    CAS  Google Scholar 

  110. Moureu C, Delange R (1901) Over some Acetylenketone and over a new method to the synthesis of β-Diketones. Bull Soc Chim Fr 25:302–313

    CAS  Google Scholar 

  111. Grotjahn DB, Van S, Combs D, Lev DA, Schneider C, Rideout M, Meyer C, Hernandez G, Mejorado L (2002) New flexible synthesis of pyrazoles with different, functionalized substituents at C3 and C5. J Org Chem 67:9200–9209

    CAS  Google Scholar 

  112. Bishop BC, Brands KMJ, Gibb AD, Kennedy DJ (2004) Regioselective synthesis of 1,3,5-substituted pyrazoles from acetylenic ketones and hydrazines. Synthesis 43–52

    Google Scholar 

  113. Willy B, Müller TJJ (2008) Regioselective three-component synthesis of highly fluorescent 1,3,5-trisubstituted pyrazoles. Eur J Org Chem 4157–4168

    Google Scholar 

  114. Liu HL, Jiang HF, Zhang M, Yao WJ, Zhu QH, Tang Z (2008) One-pot three-component synthesis of pyrazoles through a tandem coupling-cyclocondensation sequence. Tetrahedron Lett 49:3805–3809

    CAS  Google Scholar 

  115. Brown DJ (1970) The pyrimidines, supplement 1. In: Weissberger A (ed) The chemistry of heterocyclic compounds, vol 16. Wiley-Interscience, New York

    Google Scholar 

  116. Lister JH (1971) Fused pyrimidines, Pt. 2: purines. In: Weissberger A, Taylor EC (eds) The chemistry of heterocyclic compounds, vol 24. Wiley-Interscience, New York

    Google Scholar 

  117. Hoffmann MG, Nowak A, Müller M (1996) Pyrimidines. In: Schaumann E (ed) Houben-Weyl, Methoden der Organischen Chemie; Hetarenes IV, Six-Membered and Larger Hetero-Rings with Maximum Unsaturation, vol E9b Part 1, 4th edn. G Thieme, Stuttgart, pp 1–249

    Google Scholar 

  118. Hurst DT (1980) An introduction to the chemistry and biochemistry of pyrimidines, purines and pteridines. Wiley, Chichester

    Google Scholar 

  119. Bojarski JT, Mokrosz JL, Bartón HJ, Paluchowska MH (1985) Recent progress in barbituric-acid chemistry. Adv Heterocycl Chem 38:229–297

    CAS  Google Scholar 

  120. Brown DJ (1984) Pyrimidines and their benzo derivatives. In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry, vol 3. Pergamon, Oxford, pp 57–155

    Google Scholar 

  121. Ahluwalia VK, Kaila N, Bala S (1987) Synthesis and antifungal and antibacterial activities of some 2-amino-4, 6-substituted-pyrimidines and 4-styryl-6, 7-pyranocoumarins. Indian J Chem Sect B 26B:700–702

    CAS  Google Scholar 

  122. El-Hashash MA, Mahmoud MR, Madboli SA (1993) A facile one-pot conversion of chalcones to pyrimidine-derivatives and their antimicrobial and antifungal activities. Indian J Chem Sect B 32B:449–452

    CAS  Google Scholar 

  123. Keutzberger A, Gillessen J (1985) Antimycotic agents 18. Aromatically substituted 2-(4-toluidino)pyrimidines. Arch Pharm (Weinheim, Ger) 318:370–374

    CAS  Google Scholar 

  124. Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P, O’Reilly T, Wood J, Zimmermann J (2001) Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21:499–512

    CAS  Google Scholar 

  125. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB (1997) Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett 7:187–192

    CAS  Google Scholar 

  126. Lehn JM (1995) Supramolecular chemistry – concepts and perspectives (Chapter 9). VCH, Weinheim

    Google Scholar 

  127. Hanan GS, Volkmer D, Schubert US, Lehn JM, Baum G, Fenske D (1997) Coordination arrays: tetranuclear cobalt(II) complexes with [2×2]-grid structure. Angew Chem Int Ed Engl 36:1842–1844

    CAS  Google Scholar 

  128. Semenov A, Spatz JP, Möller M, Lehn JM, Sell B, Schubert D, Weidl CH, Schubert US (1999) Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angew Chem Int Ed 38:2547–2550

    CAS  Google Scholar 

  129. Harriman A, Ziessel R (1998) Building photoactive molecular-scale wires. Coord Chem Rev 171:331–339

    CAS  Google Scholar 

  130. Harriman A, Ziessel R (1996) Making photoactive molecular-scale wires. Chem Commun 1707–1716

    Google Scholar 

  131. Gompper R, Mair HJ, Polborn K (1997) Synthesis of oligo(diazaphenyls). tailor-made fluorescent heteroaromatics and pathways to nanostructures. Synthesis 696–718

    Google Scholar 

  132. Adlington RM, Baldwin JE, Catterick D, Pritchard GJ (1997) A versatile approach to pyrimidin-4-yl substituted alpha-amino acids from alkynyl ketones; the total synthesis of L-lathyrine. Chem Commun 1757–1758

    Google Scholar 

  133. Bagley MC, Hughes DD, Taylor PH, Xiong X (2003) Highly efficient synthesis of pyrimidines under microwave-assisted conditions. Synlett 259–261

    Google Scholar 

  134. Bagley MC, Hughes DD, Sabo HM, Taylor PH, Xiong X (2003) One-pot synthesis of pyridines or pyrimidines by tandem oxidation-heteroannulation of propargylic alcohols. Synlett 1443–1446

    Google Scholar 

  135. Baddar FG, Al-Hajjar FH, El-Rayyes NR (1976) Acetylenic ketones 2. Reaction of acetlyenic ketones with nucleophilic nitrogen-compounds. J Heterocycl Chem 13:257–268

    CAS  Google Scholar 

  136. Adlington RM, Baldwin JE, Catterick D, Pritchard GJ (1999) The synthesis of pyrimidin-4-yl substituted alpha-amino acids. A versatile approach from alkynyl ketones. J Chem Soc Perk Trans 1:855–866

    Google Scholar 

  137. Bagley MC, Hughes DD, Lubinu MC, Merritt EA, Taylor PH, Tomkinson NCO (2004) Microwave-assisted synthesis of pyrimidine libraries. QSAR Comb Sci 23:859–867

    CAS  Google Scholar 

  138. Breuning E, Ziener U, Lehn JM, Wegelius E, Rissanen K (2001) Two-level self-organisation of arrays of [2×2] grid-type tetranuclear metal complexes by hydrogen bonding. Eur J Inorg Chem 1515–1521

    Google Scholar 

  139. Ahmed MSM, Mori A (2003) Carbonylative sonogashira coupling of terminal alkynes with aqueous ammonia. Org Lett 5:3057–3060

    CAS  Google Scholar 

  140. Ahmed MSM, Kobayashi K, Mori A (2005) One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling. Org Lett 7:4487–4489

    CAS  Google Scholar 

  141. Stonehouse JP, Chekmarev DS, Ivanova NV, Lang S, Pairaudeau G, Smith N, Stocks MJ, Sviridov SI, Utkina LM (2008) One-pot four-component reaction for the generation of pyrazoles and pyrimidines. Synlett 100–104

    Google Scholar 

  142. Ma W, Li X, Yang J, Liu Z, Chen B, Pan X (2006) A convenient synthesis of aryl ferrocenylethynyl ketones and 2-ferrocenyl-4H-chromen-4-ones via palladium-catalyzed carbonylation coupling. Synthesis 2489–2492

    Google Scholar 

  143. Karpov AS, Merkul E, Rominger F, Müller TJJ (2005) Concise syntheses of meridianins by carbonylative alkynylation and a four-component pyrimidine synthesis. Angew Chem Int Ed 44:6951–6956

    CAS  Google Scholar 

  144. Tsuji J, Ohno K (1965) Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex. Tetrahedron Lett 6:3969–3971

    Google Scholar 

  145. Tsuji J, Ohno K (1967) Organic syntheses by means of noble metal compounds part XXXII selective decarbonylation of α,β-unsaturated aldehydes using rhodium complexes. Tetrahedron Lett 8:2173–2176

    Google Scholar 

  146. Fristrup P, Kreis M, Palmelund A, Norrby PO, Madsen R (2008) The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: a combined experimental and theoretical study. J Am Chem Soc 130:5206–5215

    CAS  Google Scholar 

  147. Tsuji J, Ohno K (1968) Organic synthesis by means of noble metal compounds. XXXV. Novel decarbonylation reactions of aldehydes and acyl halides using rhodium complexes. J Am Chem Soc 90:99–107

    Google Scholar 

  148. Nakao Y, Satoh J, Shirakawa E, Hiyama T (2006) Regio- and stereoselective decarbonylative carbostannylation of alkynes catalyzed by Pd/C. Angew Chem Int Ed 45:2271–2274

    CAS  Google Scholar 

  149. Gooßen LJ, Paetzold J (2002) Pd-catalyzed decarbonylative olefination of aryl esters: towards a waste-free heck reaction. Angew Chem Int Ed 41:1237–1241

    Google Scholar 

  150. Gooßen LJ, Paetzold J (2004) Decarbonylative heck olefination of enol esters: salt-free and environmentally friendly access to vinyl arenes. Angew Chem Int Ed 43:1095–1098

    Google Scholar 

  151. Gooßen LJ, Rudolphi F, Oppel C, Rodríguez N (2008) Synthesis of ketones from α-oxocarboxylates and aryl bromides by Cu/Pd-catalyzed decarboxylative cross-coupling. Angew Chem Int Ed 47:3043–3045

    Google Scholar 

  152. Gooßen LJ, Zimmermann B, Knauber T (2008) Palladium/copper-catalyzed decarboxylative cross-coupling of aryl chlorides with potassium carboxylates. Angew Chem Int Ed 47:7103–7106

    Google Scholar 

  153. Ketcha DM, Gribble GW (1985) A convenient synthesis of 3-acylindoles via Friedel Crafts acylation of 1-(phenylsulfonyl)indole. A new route to pyridocarbazole-5, 11-quinones and ellipticine. J Org Chem 50:5451–5457

    CAS  Google Scholar 

  154. Chen C, Xi C, Jiang Y, Hong X (2005) 1,1-cycloaddition of oxalyl dichloride with dialkenylmetal compounds: formation of cyclopentadienone derivatives by the reaction of 1,4,-dilithio-1,3-dienes or zirconacyclopentadienes with oxalyl chloride in the presence of CuCl. J Am Chem Soc 127:8024–8025

    CAS  Google Scholar 

  155. Merkul E, Oeser T, Müller TJJ (2009) Consecutive three-component synthesis of ynones by decarbonylative sonogashira coupling. Chem Eur J 15:5006–5011

    CAS  Google Scholar 

  156. Archer GA, Sternbach LH (1968) Chemistry of benzodiazepines. Chem Rev 68:747–784

    CAS  Google Scholar 

  157. Popp FD, Noble AC (1967) Chemistry of diazepines. Adv Heterocycl Chem 8:21–82

    CAS  Google Scholar 

  158. Sternbach LH (1971) 1,4-benzodiazepines. Chemistry and some aspects of the structure-activity relationship. Angew Chem Int Ed Engl 10:34–43

    CAS  Google Scholar 

  159. Vanderheyden JL, Vanderheyden JE (1981) Pharmacology and mechanism of action of benzodiazepines: recent literature. J Pharm Belg 36:354–364

    CAS  Google Scholar 

  160. Jones GR, Singer PP (1989) The newer benzodiazepines. Adv Anal Toxicol 2:1–69

    CAS  Google Scholar 

  161. Bremner JB (1996) 1,2-oxazepines and 1, 2-thiazepines. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 9. Pergamon, Oxford, pp 183–198

    Google Scholar 

  162. Zellou A, Cherrah Y, Hassar M, Essassi EM (1998) Synthesis and pharmacological study of 1,5-benzodiazepine-2,4-diones and alkyl derivatives. Ann Pharm Fr 56:169–174

    CAS  Google Scholar 

  163. Savelli F, Boido A, Mule A, Piu L, Alamanni MC, Pirisino G, Satta M, Peana A (1989) 1, 4-disubstituted 1,3-dihydro-H-2–1,5-benzodiazepin-and chlorobenzodiazepin-2-ones with activity on the central nervous system (CNS). Farmaco 44:125–140

    CAS  Google Scholar 

  164. Srivastava VK, Satsangi RK, Kishore K (1982) 2-(2′-hydroxyphenyl)-4-aryl-1, 5-benzodiazepines as CNS active agents. Arzneim Forsch 32:1512–1514

    CAS  Google Scholar 

  165. Schutz H (1982) Benzodiazepines. Springer, Heidelberg

    Google Scholar 

  166. Landquist JK (1984) Application as pharmaceuticals. In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry, vol 1. Pergamon, Oxford, pp 143–183

    Google Scholar 

  167. Fryer RI (1991) Bicyclic diazepines. In: Taylor EC (ed) Comprehensive heterocyclic chemistry (Chapter ІІ), vol 50. Wiley, New York

    Google Scholar 

  168. Randall LO, Kappel B (1973) Pharmacological activity of some benzodiazepines and their metabolites. In: Garattini S, Musini E, Randall LO (eds) Benzodiazepines. Raven, New York, pp 27–51

    Google Scholar 

  169. Ried W, Torinus E (1959) Über heterocyclische Siebenringsysteme, X. Synthesen kondensierter 5-,7- und 8-gliedriger Heterocyclen mit 2 Stickstoffatomen. Chem Ber 92:2902–2916

    CAS  Google Scholar 

  170. Stahlhofen P, Ried W (1957) Über heterocyclische Siebenringsysteme, V. Umsetzung von o-Phenylendiamin mit α,β-ungesättigten Carbonylverbindungen. Chem Ber 90:815–824

    Google Scholar 

  171. Nagaraja GK, Vaidya VP, Rai KS, Mahadevan KM (2006) An efficient synthesis of 1, 5-thiadiazepines and 1,5-benzodiazepines by microwave-assisted heterocyclization. Phosphorus Sulfur Silicon Relat Elem 181:2797–2806

    CAS  Google Scholar 

  172. Müller TJJ, Karpov AS (2005) Synthesis of substituted heterocycles by means of a new one-pot reaction. Ger Offen. CODEN: GWXXBX DE 10328400 A1 20050113, p 8

    Google Scholar 

  173. Willy B, Dallos T, Rominger F, Schönhaber J, Müller TJJ (2008) Three-component synthesis of cryofluorescent 2,4-disubstituted 3H-1,5-2 benzodiazepines – conformational control of emission properties. Eur J Org Chem 4796–4805

    Google Scholar 

  174. Palimkar SS, Lahoti RJ, Srinivasan KV (2007) A novel one-pot three-component synthesis of 2, 4-disubstituted-3H-benzo[b][1, 4]diazepines in water. Green Chem 9:146–152

    CAS  Google Scholar 

  175. Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK (2008) 1,5-Benzothiazepine, a versatile pharmacophore: a review. Eur J Med Chem 43:2279–2290

    CAS  Google Scholar 

  176. Mane RA, Ingle DB (1982) Synthesis and biological activity of some new 1, 5-benzothiazepines containing thiazole moiety: 2-aryl-4-(4-methyl-2-substituted-aminothiazol-5-yl)-2, 3-dihydro-1,5-benzothiazepines. Indian J Chem Sect B 21B:973–974

    CAS  Google Scholar 

  177. Jadhav KP, Ingle DB (1982) Synthesis of 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines and their 1,1-dioxides as antibacterial agents. Indian J Chem Sect B 22B:180–182

    Google Scholar 

  178. Attia A, Abdel-Salam OI, Abo-Ghalia MH, Amr AE (1995) Chemical and biological reactivity of newly synthesized 2-chloro-6-ethoxy-4-acetylpyridine. Egypt J Chem 38:543–554

    CAS  Google Scholar 

  179. Reddy RJ, Ashok D, Sarma PN (1993) Synthesis of 4, 6-bis(2′-substituted-2′,3′-dihydro-1, 5-benzothiazepin-4′-yl)resorcinols as potential antifeedants. Indian J Chem Sect B 32B:404–406

    CAS  Google Scholar 

  180. Satyanarayana K, Rao MNA (1993) Synthesis of 3-[4-[2, 3-dihydro-2-(substituted aryl)-1, 5-benzothiazepin-4-yl]phenyl]sydnones as potential antiinflammatory agents. Indian J Pharm Sci 55:230–233

    CAS  Google Scholar 

  181. De Sarro G, Chimirri A, De Sarro A, Gitto R, Grasso S, Zappala M (1995) 5H-[1,2,4]oxadiazolo[5, 4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. Eur J Med Chem 30:925–929

    Google Scholar 

  182. Swellem RH, Allam YA, Nawwar GAM (1999) Cinnamoylacetonitrile in heterocyclic synthesis, part 7. Simple synthesis of benzothiazepines, pyrones and oxazolopyridine. Z Naturforsch B 54:1197–1201

    CAS  Google Scholar 

  183. Dubey PK, Naidu A, Kumar CR, Reddy PVVP (2003) Preparation of 4-(1-alkylbenz[d]imidazol-2-yl)-2-phenyl-2,3-dihydrobenzo[b][1, 4]thiazepines. Indian J Chem Sect B 42:1701–1705

    Google Scholar 

  184. Lévai A (1986) Synthesis of benzothiazepines (review). Chem Heterocycl Comp 22:1161–1170

    Google Scholar 

  185. Lévai A (2000) Synthesis and chemical transformation of 1, 5-benzothiazepines. J Heterocycl Chem 37:199–214

    Google Scholar 

  186. Ried W, Marx W (1957) Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter 7-Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom. Chem Ber 90:2683–2687

    CAS  Google Scholar 

  187. Stephens WD, Field L (1959) A seven-membered heterocycle from o-aminobenzenethiol and chalcone. J Org Chem 24:1576

    CAS  Google Scholar 

  188. Aryaa K, Dandia A (2008) The expedient synthesis of 1,5-benzothiazepines as a family of cytotoxic drugs. Bioorg Med Chem Lett 18:114–119

    Google Scholar 

  189. Ried W, König E (1972) Reaktionen von Acetylenketonen mit nucleophilen Agenzien vom Typ des o-Phenylendiamins, o-Amino-thiophenols und N1-disubstituierten Hydrazins. Liebigs Ann Chem 755:24–31

    CAS  Google Scholar 

  190. Blitzke T, Sicker D, Wilde H (1995) Diethyl 2-oxopent-3-ynedioate: synthesis and first cyclizations of a novel, reactive alkyne. Synthesis 236–238

    Google Scholar 

  191. Cabarrocas G, Rafel S, Ventura M, Villalgordo JM (2000) A new approach toward the stereoselective synthesis of novel quinolyl glycines: synthesis of the enantiomerically pure quinolyl-β-amino alcohol precursors. Synlett 595–598

    Google Scholar 

  192. Cabarrocas G, Ventura M, Maestro M, Mahia J, Villalgordo JM (2001) Synthesis of novel optically pure quinolyl-β-amino alcohol derivatives from 2-amino thiophenol and chiral α-acetylenic ketones and their IBX-mediated oxidative cleavage to N-Boc quinolyl carboxamides. Tetrahedron Asymmetry 12:1851–1863

    CAS  Google Scholar 

  193. Willy B, Müller TJJ (2010) Three-component synthesis of benzo[b][1,5]thiazepines via coupling-addition-cyclocondensation sequence. Mol Diversity 13:DOI: 10.1007/s11030-009-9223-z

    Google Scholar 

  194. Obrecht D (1989) Acid-catalyzed cyclization reactions of substituted acetylenic ketones: a new approach for the synthesis of 3-halofurans, flavones, and styrylchromones. Helv Chim Acta 72:447–456

    CAS  Google Scholar 

  195. Karpov AS, Merkul E, Oeser T, Müller TJJ (2005) A novel one-pot three-component synthesis of 3-halofurans and sequential Suzuki coupling. Chem Commun 2581–2583

    Google Scholar 

  196. Karpov AS, Merkul E, Oeser T, Müller TJJ (2006) One-pot three-component synthesis of 3-halofurans and 3-chloro-4-iodofurans. Eur J Org Chem 2991–3000

    Google Scholar 

  197. Heasley VL, Buczala DM, Chappell AE, Hill DJ, Whisenand JM, Shellhamer DF (2002) Addition of bromine chloride and iodine monochloride to carbonyl-conjugated, acetylenic ketones: synthesis and mechanisms. J Org Chem 67:2183–2187

    CAS  Google Scholar 

  198. Ma S, Wu B, Shi Z (2004) An efficient synthesis of 4-halo-5-hydroxyfuran-2(5H)-ones via the sequential halolactonization and γ-hydroxylation of 4-aryl-2, 3-alkadienoic acids. J Org Chem 69:1429–1431

    CAS  Google Scholar 

  199. Merkul E, Müller TJJ (2006) A new consecutive three-component oxazole synthesis by an amidation-coupling-cycloisomerization (ACCI) sequence. Chem Commun 4817–4819

    Google Scholar 

  200. Merkul E, Grotkopp O, Müller TJJ (2009) 2-oxazol-5-ylethanones by consecutive three-component amidation-coupling-cycloisomerization (ACCI) sequence. Synthesis 502–507

    Google Scholar 

  201. Merkul E, Boersch C, Frank W, Müller TJJ (2009) Three-component synthesis of N-Boc-4-iodopyrroles and sequential one-pot alkynylation. Org Lett 11:2269–2272

    CAS  Google Scholar 

  202. Benovsky P, Stephenson GA, Stille JR (1998) Asymmetric formation of quaternary centers through aza-annulation of chiral β-enamino amides with acrylate derivatives. J Am Chem Soc 120:2493–2500

    CAS  Google Scholar 

  203. Paulvannan K, Chen T (2000) Solid-phase synthesis of 1,2,3,4-tetrahydro-2-pyridones via aza-annulation of enamines. J Org Chem 65:6160–6166

    CAS  Google Scholar 

  204. Karpov AS, Rominger F, Müller TJJ (2005) A diversity oriented four-component approach to tetrahydro-β-carbolines initiated by Sonogashira coupling. Org Biomol Chem 4382–4391

    Google Scholar 

  205. Barta NS, Brode A, Stille JR (1994) Asymmetric formation of quaternary centers through aza-annulation of chiral β-enamino esters with acrylate derivatives. J Am Chem Soc 116:6201–6206

    CAS  Google Scholar 

  206. Fleming I (2002) Pericyclic reactions. Oxford University, New York, pp 78–85

    Google Scholar 

  207. Nakazumi H, Ueyama T, Kitao T (1985) Antimicrobial activity of 3-(substituted methyl)-2-phenyl-4H-1-benzothiopyran-4-ones. J Heterocycl Chem 22:1593–1596

    CAS  Google Scholar 

  208. Nakazumi H, Ueyama T, Kitao T (1984) Synthesis and antibacterial activity of 2-phenyl-4H-benzo[b]thiopyran-4-ones (thioflavones) and related compounds. J Heterocycl Chem 21:193–196

    CAS  Google Scholar 

  209. Couquelet J, Tronche P, Niviere P, Andraud G (1963) Antibiotic activity of an isomer of patulin and of a homolog. Trav Soc Pharm Montpellier 23:214–219

    CAS  Google Scholar 

  210. Holshouser MH, Loeffler LJ, Hall IH (1981) Synthesis and anti-tumor activity of a series of sulfone analogs of 1,4-naphthoquinone. J Med Chem 24:853–858

    CAS  Google Scholar 

  211. Razdan RK, Bruni RJ, Mehta AC, Weinhardt KK, Papanastassiou ZB (1978) New class of anti-malarial drugs – derivatives of benzothiopyrans. J Med Chem 21:643–649

    CAS  Google Scholar 

  212. Dhanak D, Keenan RM, Burton G, Kaura A, Darcy MG, Shah DH, Ridgers LH, Breen A, Lavery P, Tew DG, West A (1998) Benzothiopyran-4-one based reversible inhibitors of the human cytomegalovirus (HCMV) protease. Bioorg Med Chem Lett 8:3677–3682

    CAS  Google Scholar 

  213. Bossert F (1964) New thiochromone synthesis. Liebigs Ann Chem 680:40–51

    CAS  Google Scholar 

  214. Schneller SW (1975) Thiochromanones and related Compounds. Adv Heterocycl Chem 18:59–97

    CAS  Google Scholar 

  215. Nakazumi H, Wanatabe S, Kitaguchi T, Kitao T (1990) Intermediates formed in the reaction of benzenethiol or tert-butythio benzene with ethyl benzoylacetate in polyphosphoric acid. Bull Chem Soc Jpn 63:847–851

    CAS  Google Scholar 

  216. Truce WE, Goldhamer DL (1959) The stereochemistry of the base-catalyzed addition of p-toluenethiol to sodium and ethyl phenylpropiolate. J Am Chem Soc 81:5795–5798

    CAS  Google Scholar 

  217. Buggle K, Delahunty JJ, Philbin EM, Ryan ND (1971) Preparation and cyclization of alpha-substituted β-(phenylthio)cinnamic acids. J Chem Soc C:3168–3170

    Google Scholar 

  218. Shvartsberg MS, Ivanchikova ID (2003) Synthesis of sulfur-containing heterocyclic compounds by cyclocondensation of acetylenic derivatives of anthraquinone with sodium sulfide. ARKIVOC 13:87–100

    Google Scholar 

  219. Ivanchikova ID, Shvartsberg MS (2004) Synthesis of anthrathiopyrantriones by heterocyclization of alkynoyl derivatives of chloroanthraquinones. Russ Chem Bull 53:2303–2307

    CAS  Google Scholar 

  220. Willy B, Müller TJJ (2009) A novel consecutive three-component coupling-addition-S N Ar (CASNAR) synthesis of 4H-thiochromen-4-ones. Synlett 1255–1260

    Google Scholar 

  221. Willy B, Frank W, Müller TJJ (2010) Microwave assisted three-component coupling-addition-S N Ar (CASNAR) sequences to annelated 4H-thiopyran-4-ones. Org Biomol Chem 8:90–95

    CAS  Google Scholar 

  222. Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL (1998) Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron 54:4085–4096

    CAS  Google Scholar 

  223. Shibata K, Katsuyama I, Izoe H, Matsui M, Muramatsu H (1993) Synthesis of 4, 6-disubstituted 2-methylpyridines and their 3-carboxamides. J Heterocycl Chem 30:277–281

    CAS  Google Scholar 

  224. Matsui M, Oji A, Hiramatsu K, Shibata K, Muramatsu H (1992) Synthesis and characterization of fluorescent 4,6-disubstituted-3-cyano-2-methylpyridines. J Chem Soc Perkin Trans 2:201–206

    Google Scholar 

  225. Dodson RM, Seyler JK (1951) The reaction of amidines with α, β-unsaturated ketones. J Org Chem 16:461–465

    CAS  Google Scholar 

  226. Al-Hajjar FH, Sabri SS (1982) Reaction of α,β-unsaturated ketones with guanidine – substituent effects on the protonation constants of 2-amino-4,6-diarylpyrimidines. J Heterocycl Chem 19:1087–1092

    CAS  Google Scholar 

  227. Simon D, Lafont O, Farnoux CC, Miocque M (1985) Obtaining of diaza binucleophiles on chalcones – influence of the substituent in position-2. J Heterocycl Chem 22:1551–1557

    CAS  Google Scholar 

  228. Boykin DW, Kumar A, Bajic M, Xiao G, Wilson WD, Bender BC, McCurdy DR, Hall JE, Tidwell RR (1997) Anti-pneumocystis carinii pneumonia activity of dicationic diaryl methylpyrimidines. Eur J Med Chem 32:965–972

    CAS  Google Scholar 

  229. Lloyd D, McNab H (1998) 1,5-benzodiazepines and 1,5-benzodiazepinium salts. Adv Heterocycl Chem 71:1–56

    CAS  Google Scholar 

  230. Stanovnik B, Jelen B, Turk C, Zlicar M, Svete J (1998) 1,3-dipolar cycloadditions of diazoalkanes to pyridazines. Asymmetric 1,3-dipolar cycloaddition of azomethine imines derived from diazoalkane-pyridazine cycloadducts. J Heterocycl Chem 35:1187–1204

    CAS  Google Scholar 

  231. Stanovnik B (1991) 1,3-dipolar cycloadditions of diazoalkanes to some nitrogen containing heteroaromatic systems. Tetrahedron 47:2925–2945

    CAS  Google Scholar 

  232. Katritzky AR, Zhang Y, Yuming S, Sandeep K (2003) 1,2,3-triazole formation under mild conditions via 1,3-dipolar cycloaddition of acetylenes with azides. Heterocycles 60:1225–1239

    CAS  Google Scholar 

  233. Osborn HMI, Gemmell N, Harwood LM (2002) 1,3-dipolar cycloaddition reactions of carbohydrate derived nitrones and oximes. J Chem Soc Perkin Trans 1:2419–2438

    Google Scholar 

  234. Löber S, Rodriguez-Loaiza P, Gmeiner P (2003) Click linker: efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. Org Lett 5:1753–1755

    Google Scholar 

  235. Grundmann C (1970) Synthesis of heterocyclic compounds with the aid of nitrile oxides. Synthesis 344–359

    Google Scholar 

  236. Bilgin AA, Palaska E, Sunal R, Guemuesel B (1994) Some 1,3,5-triphenyl-2-pyrazolines with antidepressant activities. Pharmazie 49:67–69

    CAS  Google Scholar 

  237. Abbady MA, Hebbachy R (1993) Synthesis and application of some symmetrical and unsymmetrical diaryl sulfides and diaryl sulfones containing pyrazolinyl and isoxazolinyl moieties. Indian J Chem Sect B 32:1119–1124

    Google Scholar 

  238. Descacq P, Nuhrich A, Varache-Beranger M, Capdepuy M, Devaux G (1990) Nitrofuranylarylpyrazolines: synthesis and antibacterial properties. Eur J Med Chem Chim Ther 25:285–290

    CAS  Google Scholar 

  239. Ankhiwala MD (1990) Studies on pyrazolines. Part 2. Preparation and antimicrobial activity of 1H-3-(2″-hydroxy-3″-bromo-4″-n-butoxy-5-nitrophen-1″-yl)-5-substituted-phenyl-2-pyrazolines and related compounds. J Indian Chem Soc 67:514–516

    CAS  Google Scholar 

  240. Fahmy AM, Hassan KM, Khalaf AA, Ahmed RA (1987) Synthesis of some new β-lactams, 4-thiazolidinones and pyrazolines. Indian J Chem Sect B 26:884–887

    Google Scholar 

  241. Müller TJJ, Braun R, Ansorge M (2000) A novel three component one-pot pyrimidine synthesis based upon a coupling-isomerization sequence. Org Lett 2:1967–1970

    Google Scholar 

  242. Braun RU, Zeitler K, Müller TJJ (2000) A novel 1,5-benzoheteroazepine synthesis via a one-pot coupling-isomerization-cyclocondensation sequence. Org Lett 2:4181–4184

    CAS  Google Scholar 

  243. Braun RU, Müller TJJ (2004) One-pot syntheses of dihydro benzo[b][1, 4]thiazepines and -diazepines via coupling-isomerization-cyclocondensation sequences. Tetrahedron 60: 9463–9469

    CAS  Google Scholar 

  244. Stetter H, Kuhlmann H, Haese W (1987) The Stetter reaction: 3-methyl-2-pentyl-2-cyclopenten-1-one (dihydrojasmone) (2-cyclopenten-1-one, 3-methyl-2-pentyl-). Org Synth 65:26–31

    CAS  Google Scholar 

  245. Stetter H, Kuhlmann H (1991) The catalyzed nucleophilic addition of aldehydes to electrophilic double bonds. Org React 40:407–496

    CAS  Google Scholar 

  246. Stetter H (1976) Catalyzed addition of aldehydes to activated double bonds – a new synthetic approach. Angew Chem Int Ed Engl 15:639

    Google Scholar 

  247. Gribble GW (1996) Pyrroles and their benzo derivatives: applications. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 2. Pergamon, Oxford, pp 207–257

    Google Scholar 

  248. Sundberg RJ (1996) Pyrroles and their benzo derivatives: synthesis. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 2. Pergamon, Oxford, pp 119–206

    Google Scholar 

  249. Fürstner A (1999) Venturing into catalysis based natural product synthesis. Synlett 1523–1533

    Google Scholar 

  250. MacDiarmid AG (1997) Polyaniline and polypyrrole: where are we headed? Synth Met 84:27–34

    CAS  Google Scholar 

  251. Daidone G, Maggio B, Schillaci D (1990) Salicylanilide and its heterocyclic analogs. A comparative study of their antimicrobial activity. Pharmazie 45:441–442

    CAS  Google Scholar 

  252. Almerico AM, Diana P, Barraja P, Dattolo G, Mingoia F, Loi AG, Scintu F, Milia C, Puddu I, La Colla P (1998) Glycosidopyrroles – Part 1. Acyclic derivatives: 1-(2-hydroxyethoxy)methylpyrroles as potential anti-viral agents. Farmaco 53:33–40

    CAS  Google Scholar 

  253. Almerico AM, Diana P, Barraja P, Dattolo G, Mingoia F, Putzolu M, Perra G, Milia C, Musiu C, Marongiu ME (1997) Glycosidopyrroles. Part 2. Acyclic derivatives: 1-(1, 3-dihydroxy-2-propoxy)methylpyrroles as potential antiviral agents. Farmaco 52:667–672

    CAS  Google Scholar 

  254. Kimura T, Kawara A, Nakao A, Ushiyama S, Shimozato T, Suzuki K (2000) Preparation of five-membered heteroaryl compounds as antiinflammatory agents. PCT Int Appl. CODEN: PIXXD2 WO 2000001688 A1 20000113, p 173

    Google Scholar 

  255. Kaiser DG, Glenn EM (1972) Correlation of plasma 4,5-bis(p-methoxyphenyl)-2-phenylpyrrole-3-acetonitrile levels with biological activity. J Pharm Sci 61:1908–1911

    CAS  Google Scholar 

  256. Lehuede J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond JM (1999) Synthesis and antioxidant activity of new tetraarylpyrroles. Eur J Med Chem 34:991–996

    CAS  Google Scholar 

  257. Kawai A, Kawai M, Murata Y, Takada J, Sakakibara M (1998) Preparation of pyridylpyrroles as interleukin and tumor necrosis factor antagonists. PCT Int Appl. CODEN: PIXXD2 WO 9802430 A1 19980122, p 95

    Google Scholar 

  258. De Laszlo SE, Chang LL, Kim D, Mantlo NB (1997) Preparation of pyridylpyrroles and analogs as cytokine inhibitors and glucagon antagonists. PCT Int Appl. CODEN: PIXXD2 WO 9716442 A1 19970509, p 178

    Google Scholar 

  259. Braun RU, Zeitler K, Müller TJJ (2001) A novel one-pot pyrrole synthesis via a coupling-isomerization-stetter-paal-knorr sequence. Org Lett 3:3297–3300

    CAS  Google Scholar 

  260. Braun RU, Müller TJJ (2004) Coupling-isomerization-stetter and coupling-isomerization-stetter-paal-knorr sequences – a multicomponent approach to furans and pyrroles. Synthesis 2391–2406

    Google Scholar 

  261. Valeur B (2002) Molecular fluorescence. Wiley-VCH, Weinheim, p 34

    Google Scholar 

  262. Toomey JE, Murugan R (1994) Six-membered ring systems: pyridine and benzo derivatives. In: Suschitzky H, Scriven EFV (eds) Progress in heterocyclic chemistry, vol 6. Pergamon, Oxford, pp 206–230

    Google Scholar 

  263. Plunkett AO (1994) Pyrrole, pyrrolidine, pyridine, piperidine, and azepine alkaloids. Nat Prod Rep 11:581–590

    CAS  Google Scholar 

  264. Pinder AR (1992) Azetidine, pyrrole, pyrrolidine, piperidine, and pyridine alkaloids. Nat Prod Rep 9:491–504

    CAS  Google Scholar 

  265. Robl JA, Duncan LA, Pluscec J, Karanewsky DS, Gordon EM, Ciosek CP Jr, Rich LC, Dehmel VC, Slusarchyk DA (1991) Phosphorus-containing inhibitors of HMG-CoA reductase. 2. Synthesis and biological activities of a series of substituted pyridines containing a hydroxyphosphinyl moiety. J Med Chem 34:2804–2815

    CAS  Google Scholar 

  266. Roth BD, Bocan TMA, Blankley CJ, Chucholowski AW, Creger PL, Creswell MW, Ferguson E, Newton RS, O’Brien P (1991) Relationship between tissue selectivity and lipophilicity for inhibitors of HMG-CoA reductase. J Med Chem 34:463–466

    CAS  Google Scholar 

  267. Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 1. Lactones of pyridine- and pyrimidine-substituted 3, 5-dihydroxy-6-heptenoic (-heptanoic) acids. J Med Chem 33:52–60

    CAS  Google Scholar 

  268. Stoltefuss J, Lögers M, Schmidt G, Brandes A, Schmeck C, Bremm KD, Bischoff H, Schmidt D (1999) 4-heteroaryl-tetrahydroquinolines and their use as inhibitors of the cholesterin-ester transfer protein. PCT Int Appl. CODEN: PIXXD2 WO 9914215 A1 19990325, p 107

    Google Scholar 

  269. Smith HW (1985) 5,6,7,8-Tetrahydroquinolines and 5,6-dihydropyrindines and their therapeutic use. Eur Pat Appl. CODEN: EPXXDW EP 161867 A2 19851121, p 35

    Google Scholar 

  270. Klimesova V, Churacek K, Sova J, Odlerova Z (1997) Antimycobacterial derivatives of 5,6,7,8-tetrahydroquinolines. Conf Org Chem Adv Org Chem 160–161

    Google Scholar 

  271. Knorr H, Mildenberger H, Salbeck G, Sachse B, Hartz P (1980) 4-Substituted 5,6,7,8-tetrahydroquinolines. Ger Offen. CODEN: GWXXBX DE 2918591 19801120. Ger Offen DE 2918590, p 44

    Google Scholar 

  272. Beattie DE, Crossley R, Curran ACW, Hill DG, Lawrence AE (1977) 5,6,7,8-Tetrahydroquinolines. 5. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinethioureas and related heterocycles. J Med Chem 20:718–721

    CAS  Google Scholar 

  273. Beattie DE, Crossley R, Curran ACW, Dixon GT, Hill DG, Lawrence AE, Shepherd RG (1977) 5,6,7,8-tetrahydroquinolines. 4. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinenitriles and thioamides. J Med Chem 20:714–718

    CAS  Google Scholar 

  274. Shiozawa A, Ichikawa Y, Komuro C, Ishikawa M, Furuta Y, Kurashige S, Miyazaki H, Yamanaka H, Sakamoto T (1984) Antivertigo agents. IV. Synthesis and antivertigo activity of 6-[ω-(4-aryl-1-piperazinyl)alkyl]-5,6,7,8-tetrahydro-1, 6-naphthyridines. Chem Pharm Bull 32:3981–3993

    CAS  Google Scholar 

  275. Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD (2004) A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci USA 101:11233–11238

    CAS  Google Scholar 

  276. Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Leonard YM, Lynch JJ, Michelson SR, Young SD (2003) Design and synthesis of 8-hydroxy-[1, 6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem 46:453–456

    CAS  Google Scholar 

  277. El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-Obaid AM (2000) Synthesis and biological evaluation of certain alpha, beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem 43:2915–2921

    CAS  Google Scholar 

  278. Calhoun W, Carlson RP, Crossley R, Datko LJ, Dietrich S, Heatherington K, Marshall LA, Meade PJ, Opalko A, Shepherd RG (1995) Synthesis and antiinflammatory activity of certain 5, 6, 7, 8-tetrahydroquinolines and related compounds. J Med Chem 383:1473–1481

    Google Scholar 

  279. Yehia NAM, Polborn K, Müller TJJ (2002) A novel four component one-pot access to pyrindines and tetrahydroquinolines based upon a coupling-isomerization sequence. Tetrahedron Lett 43:6907–6910

    CAS  Google Scholar 

  280. Dediu OG, Yehia NAM, Oeser T, Polborn K, Müller TJJ (2005) Coupling-isomerization-enamine-addition-cyclocondensation sequences – a multicomponent approach to substituted and annealed pyridines. Eur J Org Chem 1834–1858

    Google Scholar 

  281. Schramm née Dediu OG, Müller TJJ (2006) Microwave-accelerated coupling-isomerization-enamine addition-aldol condensation sequences to 1-acetyl-2-amino-cyclohexa-1,3-dienes. Synlett 1841–1845

    Google Scholar 

  282. Sauer J, Wiest H (1962) Diels-Alder additions with “inverse” electron demand. Angew Chem Int Ed Engl 1:269

    Google Scholar 

  283. Sauer J, Sustmann R (1980) Mechanistic aspects of Diels-Alder reactions: a critical survey. Angew Chem Int Ed Engl 19:779–807

    Google Scholar 

  284. Boger DL, Patel M (1989) Recent applications of the inverse electron demand Diels-Alder reaction. In: Suschitzky H, Scriven EFV (eds) Progress in heterocyclic chemistry, vol 1. Pergamon, Oxford, pp 30–64

    Google Scholar 

  285. Schramm née Dediu OG, Oeser T, Müller TJJ (2006) Coupling-isomerization-N,S-ketene acetal-addition sequences – a three-component approach to highly fluorescent pyrrolo[2,3-b]pyridines, [1,8]naphthyridines, and pyrido[2,3-b]azepines. J Org Chem 71:3494–3500

    Google Scholar 

  286. Wiesner J, Ortmann R, Jomaa H, Schlitzer M (2003) New Antimalarial Drugs. Angew Chem Int Ed 43:5274–5293

    Google Scholar 

  287. Gilles MH (2000) Management of severe malaria: a practical handbook, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  288. O’Neill PM, Mukhtar A, Stocks PA, Randle LE, Hindley WS, Storr SARC, Bickley JF, O’Neil IA, Maggs JL, Hughes RH, Winstanley PA, Bray PG, Park BK (2003) Isoquine and related amodiaquine analogues: a new generation of improved 4-aminoquinoline antimalarials. J Med Chem 46:4933–4945

    Google Scholar 

  289. Ridley RG, Hofheinz W, Matile H, Jaquet C, Dorn A, Masciadri R, Jolidon S, Richter WF, Guenzi A, Girometta MA, Urwyler H, Huber W, Thaithong S, Peters W (1996) 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 40:1846–1854

    CAS  Google Scholar 

  290. Stocks PA, Raynes KJ, Bray PG, Park BK, O’Neill PM, Ward SA (2002) Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J Med Chem 45:4975–4983

    CAS  Google Scholar 

  291. Vlakhov R, Parushev S, Vlakhov I, Nickel P, Snatzke G (1990) Synthesis of some new quinoline derivatives – potential antimalarial drugs. Pure Appl Chem 62:1303–1306

    CAS  Google Scholar 

  292. Madrid PB, Sherrill J, Liou AP, Weisman JL, DeRisi JL, Kipling GR (2005) Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorg Med Chem Lett 15:1015–1018

    CAS  Google Scholar 

  293. Fournet A, Vagneur B, Richomme P, Bruneton J (1989) New 2-aryl and 2-alkyl quinoline alkaloids isolated from Bolivian Rutaceae: Galipea longiflora. Can J Chem 67:2116–2118

    CAS  Google Scholar 

  294. Fournet A, Hocquemiller R, Roblot F, Cavé A, Richomme P, Bruneton J (1993) The chimanines, new 2-substituted quinolines, antiparasitics isolated from the Bolivian plant: Galipea longiflora. J Nat Prod 56:1547–1552

    CAS  Google Scholar 

  295. Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Cavé A, Richomme P, Bruneton J (1993) 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob Agents Chemother 37:859–863

    CAS  Google Scholar 

  296. Fakhfakh MA, Fournet A, Prina E, Mouscadet JF, Franck X, Hocquemiller R, Figadere B (2003) Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 11:5013–5023

    CAS  Google Scholar 

  297. Schramm OG, Oeser T, Kaiser M, Brun R, Müller TJJ (2008) Rapid one-pot synthesis of anti-parasitic quinolines based upon the microwave–assisted coupling-isomerization reaction (MACIR). Synlett 359–362

    Google Scholar 

  298. D’Souza DM, Rominger F, Müller TJJ (2005) A domino sequence consisting of insertion, coupling, isomerization, and Diels-Alder steps yields highly fluorescent spirocycles. Angew Chem Int Ed 44:153–158

    Google Scholar 

  299. D’Souza DM, Kiel A, Herten DP, Müller TJJ (2008) Synthesis, structure and emission properties of spirocyclic benzofuranones and dihydroindolones – a domino insertion-coupling-isomerization-Diels-Alder approach to rigid fluorophores. Chem Eur J 14:529–547

    Google Scholar 

  300. Link JT, Overman LE (1998) Intramolecular Heck reactions in natural product chemistry. In: Diederich F, Stang PJ (eds) Metal catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, pp 231–269

    Google Scholar 

  301. Pal M, Parasuraman K, Subramanian V, Dakarapu R, Yeleswarapu RK (2004) Palladium mediated stereospecific synthesis of 3-enynyl substituted thioflavones/flavones. Tetrahedron Lett 45:2305–2309

    CAS  Google Scholar 

  302. Pottier LR, Peyrat JF, Alami M, Brion JD (2004) Unexpected tandem sonogashira-carbopalladation-sonogashira coupling reaction of benzyl halides with terminal alkynes: a novel four-component domino sequence to highly substituted enynes. Synlett 1503–1508

    Google Scholar 

  303. Volmer F, Rettig W, Birckner E (1994) Photochemical mechanisms producing large fluorescence Stokes shifts. J Fluorescence 4:65–69

    Google Scholar 

  304. Yee WA, Hug SJ, Kliger DS (1988) Direct and sensitized photoisomerization of 1, 4-diphenylbutadienes. J Am Chem Soc 110:2164–2169

    CAS  Google Scholar 

  305. Müllen K, Scherf U (eds) (2006) Organic light-emitting diodes – synthesis, properties, and applications. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgments

The work summarized in this account was continuously supported by the Deutsche Forschungsgemeinschaft, the MORPHOCHEM AG, Merck Serono GmbH, the Fonds der Chemischen Industrie, and the Dr.-Otto-Röhm Gedächtnisstiftung. The dedication, the intellectual input and the skill of the group members and students who actually carried out the research in the laboratories is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. J. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, T.J.J. (2010). Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions II. Topics in Heterocyclic Chemistry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2010_43

Download citation

Publish with us

Policies and ethics