Skip to main content

Ecophysiology of Magnetotactic Bacteria

  • Chapter
  • First Online:
Magnetoreception and Magnetosomes in Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 3))

Abstract

Magnetotactic bacteria are a physiologically diverse group of prokaryotes whose main common features are the biomineralization of magnetosomes and magnetotaxis, the passive alignment and active motility along geomagnetic field lines. Magnetotactic bacteria exist in their highest numbers at or near the oxic–anoxic interfaces (OAI) of chemically stratified aquatic habitats that contain inverse concentration gradients of oxidants and reductants. Few species are in axenic culture and many have yet to be well described. The physiology of those that have been described appears to dictate their local ecology. Known Fe 3 O 4-producing strains are microaerophiles that fix atmospheric nitrogen, a process mediated by the oxygen-sensitive enzyme nitrogenase. Marine Fe3O4-producing strains oxidize reduced sulfur species to support autotrophy through the Calvin–Benson–Bassham or the reverse tricarboxylic acid cycle. These organisms must compete for reduced sulfur species with oxygen, which chemically oxidizes these compounds, and yet the organism still requires some oxygen to respire with to catalyze these geochemical reactions. Most Fe3O4-producing strains utilize nitrogen oxides as alternate electron acceptors, the reductions of which are catalyzed by oxygen-sensitive enzymes. Fe3O4-producing magnetotactic bacteria must solve several problems. They must find a location where both oxidant (oxygen) and reductants (e.g., reduced sulfur species) are available to the cell and therefore in close proximity. They must also mediate oxygen-sensitive, ancillary biochemical reactions (e.g., nitrogen fixation) important for survival. Thus, the OAI appears to be a perfect habitat for magnetotactic bacteria to thrive since microaerobic conditions are maintained and oxidant and reductant often overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK (1994) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit Rev Biotechnol 14:225–249

    PubMed  CAS  Google Scholar 

  2. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410

    PubMed  CAS  Google Scholar 

  3. Baker SH, Jin S, Aldrich HC, Howard GT, Shively JM (1998) Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2requirement for growth. J Bacteriol 180:4133–4139

    PubMed  CAS  Google Scholar 

  4. Bazylinski DA (1990) Anaerobic production of single-domain magnetite by the marine, magnetotactic bacterium, strain MV-1. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 69–77

    Google Scholar 

  5. Bazylinski DA (1995) Structure and function of the bacterial magnetosome. ASM News 61:337–343

    Google Scholar 

  6. Bazylinski DA, Blakemore RP (1983a) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46:1118–1124

    PubMed  CAS  Google Scholar 

  7. Bazylinski DA, Blakemore RP (1983b) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr Microbiol 9:305–308

    CAS  Google Scholar 

  8. Bazylinski DA, Frankel, RB (2000) Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM, Washington DC, pp 109–144

    Google Scholar 

  9. Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Mineral Geochem 54:217–247

    CAS  Google Scholar 

  10. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nature Rev Microbiol 2:217–230

    CAS  Google Scholar 

  11. Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401

    PubMed  CAS  Google Scholar 

  12. Bazylinski DA, Moskowitz BM (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism, and environmental significance. Rev Mineral Geochem 35:181–223

    CAS  Google Scholar 

  13. Bazylinski DA, Dean AJ, Schüler D, Phillips EJP, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    PubMed  CAS  Google Scholar 

  14. Bazylinski DA, Dean AJ, Williams TJ, Kimble-Long L, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    PubMed  CAS  Google Scholar 

  15. Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    PubMed  CAS  Google Scholar 

  16. Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334:518–519

    Google Scholar 

  17. Bazylinski DA, SooHoo CK, Hollocher TC (1986) Growth of Pseudomonas aeruginosa on nitrous oxide. Appl Environ Microbiol 51:1239–1246

    PubMed  CAS  Google Scholar 

  18. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    PubMed  CAS  Google Scholar 

  19. Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    PubMed  CAS  Google Scholar 

  20. Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    PubMed  CAS  Google Scholar 

  21. Blakemore RP, Short K, Bazylinski DA, Rosenblatt C, Frankel RB (1985) Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol J 4:53–71

    Article  CAS  Google Scholar 

  22. Burgess JG, Kawaguchi R, Sakaguchi T, Thornhill RH, Matsunaga T (1993) Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences. J Bacteriol 175:6689–6694

    PubMed  CAS  Google Scholar 

  23. Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218:371–375

    PubMed  CAS  Google Scholar 

  24. Charnock JM, Dreusch A, Körner H, Neese F, Nelson J, Kannt A, Michel H, Garner CD, Kroneck PMH, Zumft WG (2000) Structural investigations of the CuA centre of nitrous oxide reductase from Pseudomonas stutzeri by site-directed mutagenesis and X-ray absorption spectroscopy. Eur J Biochem 267:1368–1381

    PubMed  CAS  Google Scholar 

  25. Cox RB, Quayle JR (1975) The autotrophic growth of Micrococcus denitrificans on methanol. Biochem J 150:569–571

    PubMed  CAS  Google Scholar 

  26. Dancis A, Haile D, Yuan,DS, Klausner RD (1994a) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660–25667

    PubMed  CAS  Google Scholar 

  27. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    PubMed  CAS  Google Scholar 

  28. Dean AJ, Bazylinski DA (1999) Genome analysis of several magnetotactic bacterial strains using pulsed-field gel electrophoresis. Curr Microbiol 39:219–225

    PubMed  CAS  Google Scholar 

  29. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    PubMed  CAS  Google Scholar 

  30. Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JN, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiol 150:2931–2945

    CAS  Google Scholar 

  31. Fernández de Henestrosa AR, Cuñé J, Mazón G, Dubbels BL, Bazylinski DA, Barbé J (2003) Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J Bacteriol 185:4471–4482

    Google Scholar 

  32. Fernández de Henestrosa AR, Rivera E, Tapias A, Barbé J (1998) Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003

    Google Scholar 

  33. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114

    CAS  Google Scholar 

  34. Frankel RB, Bazylinski DA, Johnson M, Taylor BL (1997) Magneto-aerotaxis in marine, coccoid bacteria. Biophys J 73:994–1000

    PubMed  CAS  Google Scholar 

  35. Frankel RB, Papaefthymiou GC, Blakemore RP, O'Brien W (1983) Fe3O4precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159

    CAS  Google Scholar 

  36. Fuchs G (1980) Alternate pathways of autotrophic CO2fixation. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin Heidelberg New York, pp 365–382

    Google Scholar 

  37. Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  38. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    PubMed  CAS  Google Scholar 

  39. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    PubMed  Google Scholar 

  40. Guerin WF, Blakemore RP (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl Environ Microbiol 58:1102–1109

    PubMed  CAS  Google Scholar 

  41. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    PubMed  CAS  Google Scholar 

  42. Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek V, Jendrossek D (2004) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475

    PubMed  CAS  Google Scholar 

  43. Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR (1996) Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 178:347–356

    PubMed  CAS  Google Scholar 

  44. Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544

    PubMed  CAS  Google Scholar 

  45. Hoffman PS, Krieg NR, Smibert RM (1979) Studies of the microaerophilic nature of Campylobacter fetus subsp, jejuni. I. Physiological aspects of enhanced aerotolerance. Can J Microbiol 25:1–7

    Article  PubMed  CAS  Google Scholar 

  46. Hu Y, Fay AW, Dos Santos PC, Naderi F, Ribbe MW (2004) Characterization of Azotobacter vinelandii nifZ deletion strains. Indication of stepwise MoFe protein assembly. J Biol Chem 279:54963–54971

    PubMed  CAS  Google Scholar 

  47. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Åresolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    PubMed  CAS  Google Scholar 

  48. Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515

    CAS  Google Scholar 

  49. Kawaguchi R, Burgess JG, Sakaguchi T, Takeyama H, Thornhill RH, Matsunaga T (1995) Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-proteobacteria. FEMS Microbiol Lett 126:277–282

    PubMed  CAS  Google Scholar 

  50. Kim S, Burgess BK (1996) Evidence for the direct interaction of the nifW gene product with the MoFe protein. J Biol Chem 271:9764–9770

    PubMed  CAS  Google Scholar 

  51. Kirchhausen, T. (2000) Three ways to make a vesicle. Nature Rev Mol Cell Biol 1:187–198

    CAS  Google Scholar 

  52. Koch KA, Pena MM, Thiele DJ (1997) Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol 4:549–560

    PubMed  CAS  Google Scholar 

  53. Komeili A, Li Z, Newman DK, Jensen GJ (2005) Magnetosomes are invaginations organized by the actin-like protein MamK. Science 311:242–245

    PubMed  Google Scholar 

  54. Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present prior to magnetite formation and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    PubMed  CAS  Google Scholar 

  55. Krieg NR, Hoffman PS (1986) Microaerophily and oxygen toxicity. Annu Rev Microbiol 40:107–130

    PubMed  CAS  Google Scholar 

  56. Kristjansson JK, Hollocher TC (1980) First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J Biol Chem 255:704–707

    PubMed  CAS  Google Scholar 

  57. Kristjansson JK, Hollocher TC (1981) Partial purification and characterization of nitrous oxide reductase from Paracoccus dentrificans. Curr Microbiol 6:247–251

    CAS  Google Scholar 

  58. Li L, Kaplan J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 272:28485–28493

    PubMed  CAS  Google Scholar 

  59. Li L, Kaplan J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem 276:5036–5043

    PubMed  CAS  Google Scholar 

  60. Mandernack KW, Bazylinski DA, Shanks WC, Bullen TD (1999) Oxygen and isotope studies of magnetite produced by magnetotactic bacteria. Science 285:1892–1896

    PubMed  CAS  Google Scholar 

  61. Maratea D, Blakemore RP (1981) Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int J Syst Bacteriol 31:452–455

    Article  Google Scholar 

  62. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    PubMed  CAS  Google Scholar 

  63. Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    CAS  Google Scholar 

  64. Matsunaga T, Tsujimura N (1993) Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically. Appl Microbiol Biotechnol 39:368–371

    CAS  Google Scholar 

  65. Mayer SM, Gormal CA, Smith BE, Lawson DM (2002) Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). J Biol Chem 277:35263–35266

    PubMed  CAS  Google Scholar 

  66. Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993a) Electron microscopy study of magnetosomes in a cultures coccoid magnetotactic bacterium. Proc R Soc London B 251:231–236

    Google Scholar 

  67. Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993b) Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc R Soc London B 251:237–242

    Google Scholar 

  68. Moench TT (1988) Biliphococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie van Leeuwenhoek 54:483–496

    PubMed  CAS  Google Scholar 

  69. Nakamura C, Sakaguchi T, Kudo S, Burgess JG, Sode K, Matsunaga T (1993) Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1. Appl Biochem Biotechnol 39/40:169–176

    Google Scholar 

  70. Nakamura, C, Burgess JG, Sode K, Matsunaga T (1995a) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum AMB-1. J Biol Chem 270:28392–28396

    PubMed  CAS  Google Scholar 

  71. Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995b) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J Biochem 118:23–27

    PubMed  CAS  Google Scholar 

  72. Neilands JB (1984) A brief history of iron metabolism. Biol Metals 4:1–6

    Google Scholar 

  73. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  74. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    CAS  Google Scholar 

  75. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    PubMed  CAS  Google Scholar 

  76. Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y (1999) Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181:2142–2147

    PubMed  CAS  Google Scholar 

  77. O'Brien W, Paoletti LC, Blakemore, RP (1987) Spectral analysis of cytochromes in Aquaspirillum magnetotacticum. Curr Microbiol 15:121–127

    Google Scholar 

  78. Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188

    PubMed  CAS  Google Scholar 

  79. Okamura Y, Takeyama H, Sekine T, Sakaguchi T, Wahyudi AT, Sato R, Kamiya S, Matsunaga T (2003) Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Appl Environ Microbiol 69:4274–4277

    PubMed  CAS  Google Scholar 

  80. Orme-Johnson WH (1985) Molecular basis of biological nitrogen fixation. Annu Rev Biophys Biophys Chem 14:419–459

    PubMed  CAS  Google Scholar 

  81. Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76

    PubMed  CAS  Google Scholar 

  82. Paoletti LC, Blakemore RP (1988) Iron reduction by Aquaspirillum magnetotacticum. Curr Microbiol 17:339–342

    CAS  Google Scholar 

  83. Paulsen IT, Saier Jr MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    PubMed  CAS  Google Scholar 

  84. Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998a) Reaction sequence of iron sulfides in bacteria and their use as biomarkers. Science 280:880–883

    PubMed  Google Scholar 

  85. Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998b) Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. Am Mineral 83:1469–1481

    Google Scholar 

  86. Preuss A., Schauder R, Fuchs G, Stichler W (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2fixation pathways. Z Naturforsch Sect C 44:397–402

    CAS  Google Scholar 

  87. Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Prakash L, Sherman F, Miller M, Lawrence CW, Tabor HW (eds) Molecular and environmental aspects of mutagenesis. Charles C. Thomas, Springfield IL, pp 128–142

    Google Scholar 

  88. Ramos JL, Robson RL (1985) Isolation and properties of mutants of Azotobacter chroococcum defective in aerobic nitrogen fixation. J Gen Microbiol 131:1449–1458

    CAS  Google Scholar 

  89. Rogers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rogers C (1990) Intercellular structure in a many-celled magnetotactic procaryote. Arch Microbiol 154:18–22

    Google Scholar 

  90. Sakaguchi H, Hagiwara H, Fukumori Y, Tamaura Y, Funaki M, Hirose S (1993a) Oxygen concentration-dependent induction of a - 140kDa protein in magnetic bacterium Magnetospirillum magnetotacticum MS-1. FEMS Microbiol Lett 107:169–174

    Article  CAS  Google Scholar 

  91. Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  92. Sakaguchi T, Burgess JG, Matunaga T (1993b) Magnetite formation by a sulphate-reducing bacterium. Nature 365:47–49

    CAS  Google Scholar 

  93. Sakaguchi T, Tsujimura N, Matsunaga T (1996) A novel method for isolation of magnetic bacteria without magnetic collection using magnetotaxis. J Microbiol Methods 26:139–145

    Google Scholar 

  94. Saiki K, Mogi T, Ogura K, Anraku Y (1993) In vitro heme O synthesis by the cyoE gene product from Escherichia coli. J Biol Chem 268:26041–26044

    PubMed  CAS  Google Scholar 

  95. Scheffel A, Gruska M, Faive D, Linaroudisn A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 441:248

    CAS  Google Scholar 

  96. Schleifer K-H, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Kohler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Google Scholar 

  97. Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790

    PubMed  Google Scholar 

  98. Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    PubMed  Google Scholar 

  99. Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4mineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  100. Schüler D, Spring S, Bazylinski DA (1999) Improved technique for the isolation of magnetotactic spirilla from freshwater sediment and their phylogenetic characterization. Syst Appl Microbiol 22:466–471

    PubMed  Google Scholar 

  101. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    PubMed  CAS  Google Scholar 

  102. Shah VK, Allen JR, Spangler NJ, Ludden PW (1994) In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NIFB protein. J Biol Chem 269:1154–1158

    PubMed  CAS  Google Scholar 

  103. Shah VK, Imperial J, Ugalde RA, Ludden PW, Brill WJ (1986) In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 83:1636–1640

    PubMed  CAS  Google Scholar 

  104. Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW (1999) Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Bacteriol 181:2797–2801

    PubMed  CAS  Google Scholar 

  105. Shively JM, Saluja A, McFadden BA (1978) Ribulose-bisphophate carboxylase from methanol-grown Paracoccus denitrificans. J Bacteriol 134:1123–1132

    PubMed  CAS  Google Scholar 

  106. Short KA, Blakemore RP (1986) Iron respiration-driven proton translocation in aerobic bacteria. J Bacteriol 167:729–731

    PubMed  CAS  Google Scholar 

  107. Short KA, Blakemore RP (1989) Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Arch Microbiol 152:342–346

    PubMed  CAS  Google Scholar 

  108. Simmons SL, Bazylinski DA, Edwards KJ (2006) South-seeking magnetotactic bacteria in the northern hemisphere. Science 311:371–374

    PubMed  CAS  Google Scholar 

  109. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal pond. Appl Environ Microbiol 70:6230–6239

    PubMed  CAS  Google Scholar 

  110. Simon HM, Homer MJ, Roberts GP (1996) Perturbation of nifT expression in Klebsiella pneumoniae has limited effect on nitrogen fixation. J Bacteriol 178:2975–2977

    PubMed  CAS  Google Scholar 

  111. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557

    PubMed  CAS  Google Scholar 

  112. Tamegai H, Fukumori Y (1994) Purification, and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillum magnetotacticum. FEBS Lett 347:22–26

    PubMed  CAS  Google Scholar 

  113. Tamegai H, Yamanaka T, Fukumori Y (1993) Purification and properties of a “cytochrome a 1”-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochim Biophys Acta 1158:237–243

    PubMed  CAS  Google Scholar 

  114. Tanimura Y, Fukumori Y (2000) Heme-copper oxidase family structure of Magnetospirillum magnetotacticum “cytochrome a 1-like” hemoprotein without cytochrome c oxidase activity. J Inorg Biochem 82:73–78

    PubMed  CAS  Google Scholar 

  115. Taoka A, Yoshimatsu K, Kanemori M, Fukumori Y (2003) Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analysis. Can J Microbiol 49:197–206

    PubMed  CAS  Google Scholar 

  116. Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    PubMed  CAS  Google Scholar 

  117. van Vliet AH, Wooldridge KG, Ketley JM (1998) Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298

    PubMed  Google Scholar 

  118. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  119. Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    PubMed  CAS  Google Scholar 

  120. Wolfe RS, Thauer RK, Pfennig N (1987) A capillary racetrack method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 45:31–36

    Google Scholar 

  121. Yamazaki T, Oyanagi H, Fujiwara T, Fukumori,Y (1995) Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum; a novel cytochrome cd 1 with Fe(II):nitrite oxidoreductase activity. Eur J Biochem 233:665–671

    PubMed  CAS  Google Scholar 

  122. Yoshimatsu K, Fujiwara T, Fukumori Y (1995) Purification, primary structure, and evolution of cytochrome c-550 from the magnetic bacterium, Magnetospirillum magnetotacticum. Arch Microbiol 163:400–406

    PubMed  CAS  Google Scholar 

  123. Yun NR, Arai H, Ishii M, Igarashi Y (2001) The genes for anabolic 2-oxoglutarate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochem Biophys Res Commun 282:589–594

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K.J. Edwards, R.B. Frankel, and S.L. Simmons for collaboration and stimulating discussion. We are particularly grateful to D. Schüler for sharing unpublished information. Research in our laboratory is supported by US National Science Foundation Grant EAR-0311950.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Bazylinski .

Editor information

Dirk Schüler

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bazylinski, D.A., Williams, T.J. (2006). Ecophysiology of Magnetotactic Bacteria. In: Schüler, D. (eds) Magnetoreception and Magnetosomes in Bacteria. Microbiology Monographs, vol 3. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_038

Download citation

Publish with us

Policies and ethics