Skip to main content

Enhancing Human Cardiomyocyte Differentiation from Induced Pluripotent Stem Cells with Trichostatin A

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Abstract

Human induced pluripotent stem (iPS) cells are a promising source of autologous cardiomyocytes to repair and regenerate myocardium for treatment of heart disease. In this study, we describe a method for enhanced cardiomyocyte production from human iPS cells by treating embryoid bodies with a histone deacetylase inhibitor, trichostatin A (TSA), together with activin A and bone morphogenetic protein (BMP)-4. The resulting cardiomyocytes expressed cardiac-specific transcription factors and contractile proteins at both gene and protein levels. Functionally, the contractile embryoid bodies (EBs) displayed calcium cycling and were responsive to the chronotropic agents isoprenaline (0.1 μM) and carbachol (1 μM). The cardiomyocytes derived from human iPS cells may be used to engineer functional cardiac muscle tissue for studying pathophysiology of cardiac disease, for drug discovery test beds, and potentially for generation of cardiac grafts to surgically replace damaged myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Heyden MA, Jonsson MK (2012) Personalized medicine and the role of induced pluripotent stem cells. Cardiovasc Res 95:395–396

    Article  PubMed  Google Scholar 

  2. Verma V, Purnamawati K, Manasi et al (2013) Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: a review. Cell Signal 25:1096–1107

    Google Scholar 

  3. Lim SY, Sivakumaran P, Crombie DE et al (2013) Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering. Stem Cells Transl Med 2:715–725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Hosseinkhani M, Hasegawa K, Ono K et al (2007) Trichostatin A induces myocardial differentiation of monkey ES cells. Biochem Biophys Res Commun 356:386–391

    Article  PubMed  CAS  Google Scholar 

  5. Kawamura T, Ono K, Morimoto T et al (2005) Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem 280:19682–19688

    Article  PubMed  CAS  Google Scholar 

  6. Kaichi S, Hasegawa K, Takaya T et al (2010) Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovasc Res 88:314–323

    Article  PubMed  CAS  Google Scholar 

  7. Vanhaecke T, Papeleu P, Elaut G et al (2004) Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem 11:1629–1643

    Article  PubMed  CAS  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  9. Liu J, Verma PJ, Evans-Galea MV et al (2011) Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev 7:703–713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

These studies were supported by grants from the National Heart Foundation and National Health and Medical Research Council of Australia (1024817; 1056589). GJD is a Principal Research Fellow of NHMRC and AP is a Career Development Fellow of NHMRC. Support is also provided by the JR and JO Wicking Trust, Friedreich’s Ataxia Research Association (research grant and 2012 Keith Michael Andrus Cardiac Research Award), Tony and Gwyneth Lennon Foundation, and the Victorian State Government’s Department of Innovation, Industry and Regional Development’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiang Y. Lim Ph.D. or Rodney J. Dilley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lim, S.Y., Sivakumaran, P., Crombie, D.E., Dusting, G.J., Pébay, A., Dilley, R.J. (2014). Enhancing Human Cardiomyocyte Differentiation from Induced Pluripotent Stem Cells with Trichostatin A. In: Turksen, K., Nagy, A. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 1357. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_160

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_160

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3054-8

  • Online ISBN: 978-1-4939-3055-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics