Skip to main content

Role of ADARs in Mouse Development

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

RNA editing by deamination of adenosine to inosine (A-to-I editing) is a physiologically important posttranscriptional mechanism that can regulate expression of genes by modifying their transcripts. A-to-I editing is mediated by adenosine deaminases acting on RNA (ADAR) that can catalytically exchange adenosines to inosines, with varying efficiency, depending on the structure of the RNA substrates. Significant progress in understanding the biological function of mammalian ADARs has been made in the past decade by the creation and analysis of gene-targeted mice with disrupted or modified ADAR alleles. These studies have revealed important roles of ADARs in neuronal and hematopoietic tissue during embryonic and postnatal stages of mouse development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607–613

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R, Stratton MR (2006) RNA editing of human microRNAs. Genome Biol 7:R27

    Article  PubMed  Google Scholar 

  • Borchert GM, Gilmore BL, Spengler RM, Xing Y, Lanier W, Bhattacharya D, Davidson BL (2009) Adenosine deamination in human transcripts generates novel microRNA binding sites. Hum Mol Genet 18:4801–4807

    Article  PubMed  CAS  Google Scholar 

  • Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Carmichael GG (2007) ADAR editing wobbles the microRNA world. ACS Chem Biol 2:217–220

    Article  PubMed  CAS  Google Scholar 

  • Eckmann CR, Jantsch MF (1999) The RNA-editing enzyme ADAR1 is localized to the nascent ribonucleoprotein matrix on Xenopus lampbrush chromosomes but specifically associates with an atypical loop. J Cell Biol 144:603–615

    Article  PubMed  CAS  Google Scholar 

  • Eckmann CR, Neunteufl A, Pfaffstetter L, Jantsch MF (2001) The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol Biol Cell 12:1911–1924

    PubMed  CAS  Google Scholar 

  • Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY (2005) Is abundant A-to-I RNA editing primate-specific? Trends Genet 21:77–81

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Sansam CL, Singh M, Emeson RB (2006) Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26:480–488

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Li H, Zhao J, Pervushin K, Lowenhaupt K, Schwartz TU, Droge P (2011) Alternate rRNA secondary structures as regulators of translation. Nat Struct Mol Biol 18:169–176

    Article  PubMed  CAS  Google Scholar 

  • Gan Z, Zhao L, Yang L, Huang P, Zhao F, Li W, Liu Y (2006) RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells. J Biol Chem 281:33386–33394

    Article  PubMed  CAS  Google Scholar 

  • George CX, Li Z, Okonski KM, Toth AM, Wang Y, Samuel CE (2009) Tipping the balance: antagonism of PKR kinase and ADAR1 deaminase functions by virus gene products. J Interferon Cytokine Res 29:477–487

    Article  PubMed  CAS  Google Scholar 

  • George CX, Gan Z, Liu Y, Samuel CE (2011) Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 31:99–117

    Article  PubMed  CAS  Google Scholar 

  • Gothert JR, Gustin SE, Hall MA, Green AR, Gottgens B, Izon DJ, Begley CG (2005) In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105:2724–2732

    Article  PubMed  Google Scholar 

  • Greger IH, Khatri L, Ziff EB (2002) RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34(5):759–772

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Walkley CR, Lu J, Orkin SH (2009) ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM, Caceres JF, O’Connell MA (2009) Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28:3145–3156

    Article  PubMed  CAS  Google Scholar 

  • Herbert A, Lowenhaupt K, Spitzner J, Rich A (1995) Double-stranded RNA adenosine deaminase binds Z-DNA in vitro. Nucleic Acids Symp Ser 13(33):16–19

    Google Scholar 

  • Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH, Takahashi R, Misawa H, Kwak S (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 30:11917–11925

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  PubMed  CAS  Google Scholar 

  • Horsch M, Seeburg PH, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Garrett L, Gotz A, Hans W, Higuchi M, Holter SM, Naton B, Prehn C, Puk O, Racz I, Rathkolb B, Rozman J, Schrewe A, Adamski J, Busch DH, Esposito I, Graw J, Ivandic B, Klingenspor M, Klopstock T, Mempel M, Ollert M, Schulz H, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Beckers J (2011) Requirement of the RNA editing enzyme ADAR2 for normal physiology in mice. J Biol Chem 286(21):18614–18622

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Chen J, Gao M, Zhou F, Du W, Shen Y, Yang S, Zhang XJ (2007) Five novel mutations of RNA-specific adenosine deaminase gene with dyschromatosis symmetrica hereditaria. Acta Derm Venereol 87:18–21

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85:680–689

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Sun H, Ito K, Hideyama T, Aoki M, Sobue G, Tsuji S, Kwak S (2006) Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA. Neurosci Res 54:11–14

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007a) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8:763–769

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007b) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Nishikura K (1993) Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor. Semin Cell Biol 4:285–293

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K (1994a) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269:13480–13489

    PubMed  CAS  Google Scholar 

  • Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994b) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci USA 91:11457–11461

    Article  PubMed  CAS  Google Scholar 

  • Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Kwak S, Kawahara Y (2005) Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83:110–120

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Eisenberg E (2006) Algorithmic approaches for identification of RNA editing sites. Brief Funct Genomic Proteomic 5:43–45

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Levanon EY, Hallegger M, Kinar Y, Shemesh R, Djinovic-Carugo K, Rechavi G, Jantsch MF, Eisenberg E (2005) Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Jiang L, Liu WL, Kang XJ, Ao Y, Sun M, Luo Y, Song Y, Lo WH, Zhang X (2006a) Two novel mutations and evidence for haploinsufficiency of the ADAR gene in dyschromatosis symmetrica hereditaria. Br J Dermatol 154:636–642

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xiao SX, Peng ZH, Lei XB, Wang JM, Li Y, Li XL (2006b) Two frameshift mutations of the double-stranded RNA-specific adenosine deaminase gene in Chinese pedigrees with dyschromatosis symmetrica hereditaria. Br J Dermatol 155:473–476

    Article  PubMed  CAS  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    Article  PubMed  CAS  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  PubMed  CAS  Google Scholar 

  • Ma CH, Chong JH, Guo Y, Zeng HM, Liu SY, Xu LL, Wei J, Lin YM, Zhu XF, Zheng GG (2011) Abnormal expression of ADAR1 isoforms in Chinese pediatric acute leukemias. Biochem Biophys Res Commun 406:245–251

    Article  PubMed  CAS  Google Scholar 

  • Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98:14687–14692

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31:227–233

    Article  PubMed  CAS  Google Scholar 

  • Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH (1996a) RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271:31795–31798

    Article  PubMed  CAS  Google Scholar 

  • Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996b) A mammalian RNA editing enzyme. Nature 379:460–464

    Article  PubMed  CAS  Google Scholar 

  • Mittaz L, Scott HS, Rossier C, Seeburg PH, Higuchi M, Antonarakis SE (1997) Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Genomics 41:210–217

    Article  PubMed  CAS  Google Scholar 

  • Moller-Krull M, Zemann A, Roos C, Brosius J, Schmitz J (2008) Beyond DNA: RNA editing and steps toward Alu exonization in primates. J Mol Biol 382:601–609

    Article  PubMed  Google Scholar 

  • Nie Y, Ding L, Kao PN, Braun R, Yang JH (2005) ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 25:6956–6963

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    PubMed  CAS  Google Scholar 

  • Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G (2010) Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107:12174–12179

    Article  PubMed  CAS  Google Scholar 

  • Rebagliati MR, Melton DA (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48:599–605

    Article  PubMed  CAS  Google Scholar 

  • Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T (2010) Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol 6:733–740

    Article  PubMed  CAS  Google Scholar 

  • Samuel CE (2011) Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411(2):180–193

    Article  PubMed  CAS  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A-->I hyper-editing. EMBO Rep 2:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani P, Montano M, Puca A, Solovieff N, Kojima T, Wang MC, Melista E, Meltzer M, Fischer SE, Andersen S, Hartley SH, Sedgewick A, Arai Y, Bergman A, Barzilai N, Terry DF, Riva A, Anselmi CV, Malovini A, Kitamoto A, Sawabe M, Arai T, Gondo Y, Steinberg MH, Hirose N, Atzmon G, Ruvkun G, Baldwin CT, Perls TT (2009) RNA editing genes associated with extreme old age in humans and with lifespan in C. elegans. PLoS One 4:e8210

    Article  PubMed  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26:217–229

    Article  PubMed  CAS  Google Scholar 

  • Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, Steidl C, Holt RA, Jones S, Sun M, Leung G, Moore R, Severson T, Taylor GA, Teschendorff AE, Tse K, Turashvili G, Varhol R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra MA, Aparicio S (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Kesterson RA, Jacobs MM, Joers JM, Gore JC, Emeson RB (2007) Hyperphagia-mediated obesity in transgenic mice misexpressing the RNA-editing enzyme ADAR2. J Biol Chem 282:22448–22459

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19

    Article  PubMed  CAS  Google Scholar 

  • Stefl R, Oberstrass FC, Hood JL, Jourdan M, Zimmermann M, Skrisovska L, Maris C, Peng L, Hofr C, Emeson RB, Allain FH (2010) The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143:225–237

    Article  PubMed  CAS  Google Scholar 

  • Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815

    Article  PubMed  CAS  Google Scholar 

  • Vitali P, Scadden AD (2010) Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Wagner RW, Smith JE, Cooperman BS, Nishikura K (1989) A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci USA 86:2647–2651

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Khillan J, Gadue P, Nishikura K (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952–4961

    Article  PubMed  CAS  Google Scholar 

  • Ward SV, George CX, Welch MJ, Liou LY, Hahm B, Lewicki H, de la Torre JC, Samuel CE, Oldstone MB (2011) RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci USA 108:331–336

    Article  PubMed  CAS  Google Scholar 

  • Wulff BE, Sakurai M, Nishikura K (2010) Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat Rev Genet 12:81–85

    Article  PubMed  Google Scholar 

  • XuFeng R, Boyer MJ, Shen H, Li Y, Yu H, Gao Y, Yang Q, Wang Q, Cheng T (2009) ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc Natl Acad Sci USA 106:17763–17768

    Article  PubMed  Google Scholar 

  • Yang JH, Luo X, Nie Y, Su Y, Zhao Q, Kabir K, Zhang D, Rabinovici R (2003) Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109:15–23

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in C.R.W’s laboratory is supported by grants from the National Health and Medical Research Council (NHMRC) Australia; C.R.W. is the Philip Desbrow Seniro Research Fellow of the Leukaemia Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Hartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walkley, C.R., Liddicoat, B., Hartner, J.C. (2011). Role of ADARs in Mouse Development. In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_150

Download citation

Publish with us

Policies and ethics