Skip to main content

Broadening the SEVA Plasmid Repertoire to Facilitate Genomic Editing of Gram-Negative Bacteria

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Editing bacterial genomes to a predetermined extent is essential for many purposes of the synthetic biology and biotechnology fields. The use of the I-SceI deletion system has proven fundamental for such tasks in the Gram-negative bacterium Pseudomonas putida. Moreover, we have developed the Standard European Vector Architecture (SEVA) repository that comprehends a collection of plasmids that allows performing a wide number of different molecular operations. The limited number of antibiotic selection markers of the pSW-plasmids pointed us to SEVA-rize the pSW-I plasmid to expand its functionality and use. We have named these new variants as pSEVAn28S, being n any of the six different antibiotic markers of the SEVA plasmids: Ap, Km, Cm, Sm/Sp, Tet, and Gm. In that way, we have updated the previous I-SceI deletion system in two ways: (1) implementing isothermal assembly to avoid the use of restriction enzymes and T4 DNA ligase within this protocol to assemble the plasmids with the respective TSs and (2) standardizing and expanding the I-SceI-expressing plasmid variants. In this protocol, we explain the use of isothermal assembly to construct the non-replicative plasmid bearing the chromosomal homology regions and the use of different pSEVAn28S plasmids to induce the expression of the I-SceI endonuclease to obtain a deleted strain in Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martínez-García E, de Lorenzo V (2012) Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Meth Mol Biol 813:267–283

    Article  Google Scholar 

  2. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716

    Article  PubMed  Google Scholar 

  3. Wong SM, Mekalanos JJ (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:10191–10196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las HA, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2012) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucl Acids Res 41:D666–D675

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martínez-García E, Aparicio T, Goñi-Moreno A, Fraile S, de Lorenzo V (2014) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucl Acids Res 43:D1183–D1189

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kolter R, Inuzuka M, Helinski DR (1978) Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell 15:1199–1208

    Article  CAS  PubMed  Google Scholar 

  7. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Meth 6:343–345

    Article  CAS  Google Scholar 

  8. Thomas CM, Cross MA, Hussain AA, Smith CA (1984) Analysis of copy number control elements in the region of the vegetative replication origin of the broad host range plasmid RK2. EMBO J 3:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Env Microbiol 63:370–379

    CAS  Google Scholar 

  10. Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid 38:35–51

    Article  CAS  PubMed  Google Scholar 

  11. Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Meselson M (1983) Plasmid screening at high colony density. Meth Enzymol 100:333–342

    Article  CAS  PubMed  Google Scholar 

  13. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Article  CAS  PubMed  Google Scholar 

  14. Bagdasarian M, Lurz R, Ruckert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247

    Article  CAS  PubMed  Google Scholar 

  15. Kessler B, de Lorenzo V, Timmis KN (1992) A general system to integrate lacZ fusions into the chromosomes of Gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233:293–301

    Article  CAS  PubMed  Google Scholar 

  16. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucl Acids Res 37:6984–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  18. Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are indebted to Raúl Fernández López and Fernando de la Cruz (IBBTEC, Universidad de Cantabria, Spain) for advice in isothermal DNA assembly. This work was supported by the BIO Program of the Spanish Ministry of Economy and Competitiveness, the ST-FLOW, ARISYS and EVOPROG Contracts of the EU, the ERANET-IB, and the PROMT Project of the CAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Aparicio, T., de Lorenzo, V., Martínez-García, E. (2015). Broadening the SEVA Plasmid Repertoire to Facilitate Genomic Editing of Gram-Negative Bacteria. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_102

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_102

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50433-8

  • Online ISBN: 978-3-662-50435-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics