Skip to main content

Analysis of HGD Gene Mutations in Patients with Alkaptonuria from the United Kingdom: Identification of Novel Mutations

  • Research Report
  • Chapter
  • First Online:

Part of the book series: JIMD Reports ((JIMD,volume 24))

Abstract

Alkaptonuria (AKU) is a rare autosomal recessive disorder with incidence ranging from 1:100,000 to 1:250,000. The disorder is caused by a deficiency of the enzyme homogentisate 1,2-dioxygenase (HGD), which results from defects in the HGD gene. This enzyme converts homogentisic acid to maleylacetoacetate and has a major role in the catabolism of phenylalanine and tyrosine. To elucidate the mutation spectrum of the HGD gene in patients with alkaptonuria from 42 patients attending the National Alkaptonuria Centre, 14 exons of the HGD gene and the intron–exon boundaries were analysed by PCR-based sequencing. A total of 34 sequence variants was observed, confirming the genetic heterogeneity of AKU. Of these mutations, 26 were missense substitutions and four splice site mutations. There were two deletions and one duplication giving rise to frame shifts and one substitution abolishing the translation termination codon (no stop). Nine of the mutations were previously unreported novel variants. Using computational approaches based on the 3D structure, these novel mutations are predicted to affect the activity of the protein complex through destabilisation of the individual protomer structure or through disruption of protomer–protomer interactions.

Competing interests: None declared

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49–65

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effects of amino acid substitutions and indels. PLoS One 7(10):e46688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davison AS, Milan AM, Hughes AT, Dutton JJ, Ranganath LR (2014) Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects. Clin Chem Lab Med. doi:10.1515/cclm-2014-0668

  • Divina P, Kvitkovicova A, Buratti E, Vorechovsky I (2009) Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet 17:759–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D et al (1996) The molecular basis of alkaptonuria. Nat Genet 14:19–24

    Article  CAS  PubMed  Google Scholar 

  • Garrod AE (1908) The Croonian lectures on inborn errors of metabolism. Lecture II. Alkaptonuria. Lancet 2:73–79

    CAS  Google Scholar 

  • Helliwell TR, Gallagher JA, Ranganath L (2008) Alkaptonuria - a review of surgical and autopsy pathology. Histopathology 53(5):503–512

    CAS  PubMed  Google Scholar 

  • Hughes AT, Milan AM, Christensen P et al (2014) Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry. J Chromatogr B 963:106–112

    Article  CAS  Google Scholar 

  • Keller JM, Macaulay W, Ohannes A et al (2005) New developments in ochronosis: review of the literature. Rheumatol Int 25(2):81–85

    Article  PubMed  Google Scholar 

  • Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 5(19):6399–6413

    Article  Google Scholar 

  • La Du BN, Zannoni VG, Laster L et al (1958) The nature of the defect in tyrosine metabolism in alkaptonuria. J Biol Chem 230:251–260

    Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phornphutkul C, Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121

    Article  CAS  PubMed  Google Scholar 

  • Pires DE, Ascher DB, Blundell TL (2014a) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pires DE, Ascher DB, Blundell TL (2014b) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(W1):W314–W319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollak MR, Chou YH, Cerda JJ et al (1993) Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nat Genet 5:201–204

    Article  CAS  PubMed  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranganath LR, Jarvis JC, Gallagher JA (2013) Recent advances in management of alkaptonuria. J Clin Pathol 66:367–373

    Article  CAS  PubMed  Google Scholar 

  • Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comp Biol 4(3):311–323

    Article  CAS  Google Scholar 

  • Srsen S, Muller CR, Fregin A et al (2002) Alkaptonuria in Slovakia: thirty-two years of research on phenotype and genotype. Mol Genet Metab 75(4):353–359

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Preston AJ, Paulk NK et al (2012) Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition. Osteoarthritis Cartilage 20(8):880–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Titus GP, Mueller CR, Burgner J et al (2000) Crystal structure of human homogentisate dioxygenase. Nat Struct Biol 7:542–546

    Article  CAS  PubMed  Google Scholar 

  • Vilboux T, Kayser M, Introne W et al (2009) Mutation spectrum of homogentisic acid oxidase (HGD)in alkaptonuria. Hum Mutat 30(12):1611–1619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE (2008) Improving sequence variant descriptions in mutation databases and literature using the MUTALYZER sequence variation nomenclature checker. Hum Mutat 29(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Worth CL, Preissner R, Blundell TL (2011) SDM - a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zatkova A, Sedlackova T, Radvansky J et al (2011) Identification of 11 novel homogentisate 1,2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep 4:455–465

    Google Scholar 

Download references

Acknowledgements

DBA is supported by a CJ Martin Fellowship from the National Health and Medical Research Council (NHMRC; GNT1072476). DEVP is funded by the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). TLB receives funding from the University of Cambridge and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette L. Usher .

Editor information

Editors and Affiliations

Additional information

Communicated by: Viktor Kožich

Compliance with Ethics Guidelines

Jeannette Usher declares that she has no conflict of interest.

Anna Milan declares that she has no conflict of interest.

Lakshminarayan Ranganath declares that he has no conflict of interest.

David Ascher declares that he has no conflict of interest.

Douglas Pires declares that he has no conflict of interest.

Tom Blundell declares that he has no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

This article does not contain studies with animal subjects performed by any of the authors.

Details of the Contributions of Individual Authors

JU performed the sequence analysis of the HGD gene mutations, the analysis of the mutations with the freely available bioinformatics programs and the initial writing of the manuscript.

DA and DP performed the computation modelling by MCSM and DUET and the interpretation of the results.

AMM and LRR assisted with data interpretation and writing of the manuscript.

TB reviewed the result interpretation.

All authors contributed to reviewing of the manuscript.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2014 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Usher, J.L., Ascher, D.B., Pires, D.E.V., Milan, A.M., Blundell, T.L., Ranganath, L.R. (2014). Analysis of HGD Gene Mutations in Patients with Alkaptonuria from the United Kingdom: Identification of Novel Mutations. In: Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V. (eds) JIMD Reports, Volume 24. JIMD Reports, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2014_380

Download citation

  • DOI: https://doi.org/10.1007/8904_2014_380

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48226-1

  • Online ISBN: 978-3-662-48227-8

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics