Skip to main content

Interplay Among Glycerophospholipid, Sphingolipid, and Cholesterol-Derived Lipid Mediators in Brain: A Matter of Life and Death

  • Chapter
  • First Online:
Hot Topics in Neural Membrane Lipidology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam-Klages S., Schwandner R., Adam D., Kreder D., Bernardo K., and Kronke M. (1998). Distinct adapter proteins mediate acid versus neutral sphingomyelinase activation through the p55 receptor for tumor necrosis factor. J. Leukoc. Biol. 63:678–682.

    PubMed  CAS  Google Scholar 

  • Anthonsen M. W., Andersen S., Solhaug A., and Johansen B. (2001). Atypical λ/ι PKC conveys 5-lipoxygenase-leukotriene B-4-mediated cross-talk between phospholipase A2s regulating NF-κB activation in response to tumor necrosis factor-α and interleukin-1β. J. Biol. Chem. 276:35344–35351.

    PubMed  CAS  Google Scholar 

  • Antonio V., Janvier B., Brouillet A., Andreani M., and Raymondjean M. (2003). Oxysterol and 9-cis-retinoic acid stimulate the group IIA secretory phospholipase A2 gene in rat smooth-muscle cells. Biochem. J. 376:351–360.

    PubMed  CAS  Google Scholar 

  • Arévalo J. C. and Wu S. H. (2006). Neurotrophin signaling: many exciting surprises! Cell. Mol. Life Sci. 63:1523–1537.

    Google Scholar 

  • Ariel A. and Serhan C. N. (2007). Resolvins and protectins in the termination program of acute inflammation. Trends Immunol. 28:176–183.

    PubMed  CAS  Google Scholar 

  • Awasthi S., Vivekananda J., Awasthi V., Smith D., and King R. J. (2001). CTP: phosphocholine cytidylyltransferase inhibition by ceramide via PKC-alpha, p38 MAPK, cPLA2, and 5-lipoxygenase. Am. J. Physiol. Lung Cell Mol. Physiol. 281:L108–L118.

    PubMed  CAS  Google Scholar 

  • Ayasolla K., Khan M., Singh A. K., and Singh I. (2004). Inflammatory mediator and β-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radical Biol. Med. 37:325–338.

    CAS  Google Scholar 

  • Baker R. R. and Chang H. Y. (2001). Phosphatidic acid is the prominent product of endogenous neuronal nuclear lipid phosphorylation, an activity enhanced by sphingosine, linked to phospholipase C and associated with the nuclear envelope. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1534:110–120.

    CAS  Google Scholar 

  • Barrett G. L. (2000). The p75 neurotrophin receptor and neuronal apoptosis. Prog. Neurobiol. 61:205–229.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91:5252–5256.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.

    PubMed  CAS  Google Scholar 

  • Bernatchez P. N., Tremblay F., Rollin S., Neagoe P. E., and Sirois M. G. (2003). Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: role in cellular migration. J. Cell. Biochem. 90:719–731.

    PubMed  CAS  Google Scholar 

  • Björkhem I., Lütjohann D., Diczfalusy U., Stahle L., Ahlborg G., and Wahren J. (1998). Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39:1594–1600.

    PubMed  Google Scholar 

  • Boie Y., Stocco R., Sawyer N., Slipetz D. M., Ungrin M. D., Neuschafer-Rube F., Puschel G. P., Metters K. M., and Abramovitz M. (1997). Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur. J. Pharmacol. 340:227–241.

    PubMed  CAS  Google Scholar 

  • Breyer R. M., Bagdassarian C. K., Myers S. A., and Breyer M. D. (2001). Prostanoid receptors: subtypes and signaling. Annu. Rev. Pharmacol. Toxicol. 41:661–690.

    PubMed  CAS  Google Scholar 

  • Brown M. S. and Goldstein J. L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340.

    PubMed  CAS  Google Scholar 

  • Chandrasekharan N. V. and Simmons D. L. (2004). The cyclooxygenases. Genome Biol. 5:241–253.

    PubMed  CAS  Google Scholar 

  • Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.

    PubMed  CAS  Google Scholar 

  • Clarke C. J., Snook C. F., Tani M., Matmati N., Marchesini N., and Hannun Y. A. (2006). The extended family of neutral sphingomyelinases. Biochemistry 45:11247–11256.

    PubMed  CAS  Google Scholar 

  • Colquhoun A. (1998). Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem. Mol. Biol. Int. 45:331–336.

    PubMed  CAS  Google Scholar 

  • Cosgaya J. M., Chan J. R., and Shooter E. M. (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298:1245–1248.

    PubMed  CAS  Google Scholar 

  • De Stefanis D., Reffo P., Bonelli G., Baccino F. M., Sala G., Ghidoni R., Codogno P., and Isidoro C. (2002). Increase in ceramide level alters the lysosomal targeting of cathepsin D prior to onset of apoptosis in HT-29 colon cancer cells. Biol. Chem. 383:989–999.

    PubMed  Google Scholar 

  • DeCoster M. A., Lambeau G., Lazdunski M., and Bazan N. G. (2002). Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J. Neurosci. Res. 67:634–645.

    PubMed  CAS  Google Scholar 

  • Degroote S., Wolthoorn J., and Van Meer G. (2004). The cell biology of glycosphingolipids. Semin. Cell Dev. Biol. 15:375–387.

    PubMed  CAS  Google Scholar 

  • Delon C., Manifava M., Wood E., Thompson D., Krugmann S., Pyne S., and Ktistakis N. T. (2004). Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J. Biol. Chem. 279:44763–44774.

    PubMed  CAS  Google Scholar 

  • DeMattos R. B., Brendza R. P., Heuser J. E., Kierson M., Cirrito J. R., Fryer J., Sullivan P. M., Fagan A. M., Han X., and Holtzman D. M. (2001). Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem. Int. 39:415–425.

    PubMed  CAS  Google Scholar 

  • Ding Q., Wei E. Q., Zhang Y. J., Zhang W. P., and Chen Z. (2006). Cysteinyl leukotriene receptor 1 is involved in N-methyl-D-aspartate-mediated neuronal injury in mice. Acta Pharmacol. Sinica 27:1526–1536.

    CAS  Google Scholar 

  • Donati C. and Bruni P. (2006). Sphingosine 1-phosphate regulates cytoskeleton dynamics: implications in its biological response. Biochim. Biophys. Acta 1758:2037–2048.

    PubMed  CAS  Google Scholar 

  • Einicker-Lamas M., Wenceslau L. D., Bernardo R. R., Nogaroli L., Guilherme A., Oliveira M. M., and Vieyra A. (2003). Sphingosine-1-phosphate formation activates phosphatidylinositol-4 kinase in basolateral membranes from kidney cells: crosstalk in cell signaling through sphingolipids and phospholipids. J. Biochem. (Tokyo) 134:529–536.

    CAS  Google Scholar 

  • El Alwani M., Wu B. X. J., Obeid L. M., and Hannun Y. A. (2006). Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol. Ther. 112:171–183.

    PubMed  CAS  Google Scholar 

  • Famer D., Maeney S., Mousavi M., Nordberg A., Bjorkhem F., and Crisby M. (2007). Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem. Biophys. Res. Commun. 359:46–50.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Develop. 45:613–631.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: phospholipases A2 in neurological disorders, pp. 1–394. Springer, New York.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2009). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry Lajtha, A. Springer, New York (In Press).

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Google Scholar 

  • Farooqui A.A., Farooqui T., and Horrocks L.A. (2008). Metabolism and Functions of Ether Lipids in Brain, Springer, New York.

    Google Scholar 

  • Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999). Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49:139–153.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rammohan K. W., and Horrocks L. A. (1989). Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. N. Y. Acad. Sci. 559:25–36.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.

    PubMed  CAS  Google Scholar 

  • Galadari S., Kishikawa K., Kamibayashi C., Mumby M.C., and Hannun Y.A. (1998). Purification and characterization of ceramide-activated protein phosphatases. Biochemistry. 37:11232–11238.

    PubMed  CAS  Google Scholar 

  • Gomez-Muñoz A. (1998). Modulation of cell signalling by ceramides. Biochim. Biophys. Acta Lipids Lipid Metab. 1391:92–109.

    Google Scholar 

  • Gómez-Muñoz A. (2006). Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim. Biophys. Acta 1758:2049–2056.

    PubMed  Google Scholar 

  • Grimm M. O. W., Grimm H. S., Pätzold A. J., Zinser E. G., Halonen R., Duering M., Tschäpe J. A., De Strooper B., Müller U., Shen J., and Hartmann T. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat. Cell Biol. 7:1118–1123.

    PubMed  CAS  Google Scholar 

  • Gronert K. (2005). Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot. Essent. Fatty Acids. 73:221–229.

    PubMed  CAS  Google Scholar 

  • Guichardant M., Chantegrel B., Deshayes C., Doutheau A., Moliere P., and Lagarde M. (2004). Specific markers of lipid peroxidation issued from n-3 and n-6 fatty acids. Biochem. Soc. Trans. 32:139–140.

    PubMed  CAS  Google Scholar 

  • Häggstrom J. Z. and Wetterholm A. (2002). Enzymes and receptors in the leukotriene cascade. Cell. Mol. Life Sci. 59:742–753.

    Google Scholar 

  • Han X. L. and Gross R. W. (2005). Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics 2:253–264.

    PubMed  CAS  Google Scholar 

  • Hannun Y. A. and Obeid L. M. (1995). Ceramide: an intracellular signal for apoptosis. Trends Biochem. Sci. 20:73–77.

    PubMed  CAS  Google Scholar 

  • Hannun Y. A. and Obeid L. M. (2002). The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277:25847–25850.

    PubMed  CAS  Google Scholar 

  • Hashizume T., Nakao M., Kageura T., and Sato T. (1997). Sphingosine enhances arachidonic acid liberation in response to U46619 through an increase in phospholipase A2 activity in rabbit platelets. J. Biochem. (Tokyo) 122:1034–1039.

    CAS  Google Scholar 

  • Hashizume T., Nakao M., and Sato T. (1996). Sphingosine enhances phosphatidylinositol 4-kinase activity in rabbit platelets. J. Biochem. (Tokyo) 120:61–65.

    CAS  Google Scholar 

  • Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., and Tsujimoto M. (1993). Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J. Biochem. 268:11290–11295.

    CAS  Google Scholar 

  • Hayakawa M., Jayadev S., Tsujimoto M., Hannun Y. A., and Ito F. (1996). Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem. Biophys. Res. Commun. 220:681–686.

    PubMed  CAS  Google Scholar 

  • Heinrich M., Wickel M., Schneider-Brachert W., Sandberg C., Gahr J., Schwandner R., Weber T., Brunner J., Kronke M., and Schutze S. (1999). Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18:5252–5263.

    PubMed  CAS  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – Autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.

    PubMed  CAS  Google Scholar 

  • Huwiler A., Fabbro D., and Pfeilschifter J. (1998). Selective ceramide binding to protein kinase C-alpha and -delta isoenzymes in renal mesangial cells. Biochemistry. 37:14556–14562.

    PubMed  CAS  Google Scholar 

  • Huwiler A., Johannsen B., Skarstad A., and Pfeilschifter J. (2001). Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J. 15:7–9.

    PubMed  CAS  Google Scholar 

  • Ishii S., Nagase T., and Shimizu T. (2002). Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat. 68–69: 599–609.

    PubMed  Google Scholar 

  • Ishii S. and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.

    PubMed  CAS  Google Scholar 

  • Itoh K. and Yamamoto M. (2005). Regulatory role of the COX-2 pathway in the Nrf2-mediated inflammatory response. J. Clin. Biochem. Nutr. 37:9–18.

    Google Scholar 

  • Ivanova P. T., Milne S. B., Forrester J. S., and Brown H. A. (2004). Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. Molec. Interventions 4:86–96.

    CAS  Google Scholar 

  • Izumi T. and Shimizu T. (1995). Platelet-activating factor receptor: gene expression and signal transduction. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:317–333.

    Google Scholar 

  • Jarvis W. D., Fornari F. A., Jr., Browning J. L., Gewirtz D. A., Kolesnick R. N., and Grant S. (1994). Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J. Biol. Chem. 269:31685–31692.

    PubMed  CAS  Google Scholar 

  • Jayadev S., Hayter H. L., Andrieu N., Gamard C. J., Liu B., Balu R., Hayakawa M., Ito F., and Hannun Y. A. (1997). Phospholipase A2 is necessary for tumor necrosis factor α-induced ceramide generation in L929 cells. J. Biol. Chem. 272:17196–17203.

    PubMed  CAS  Google Scholar 

  • Kantarci A. and Van Dyke T. E. (2003). Lipoxins in chronic inflammation. Crit. Rev. Oral Biol. Med. 14:4–12.

    PubMed  Google Scholar 

  • Khan M., Haq E., Giri S., Singh I., and Singh A. K. (2005). Peroxisomal participation in psychosine-mediated toxicity: implications for Krabbe's disease. J. Neurosci. Res. 80:845–854.

    PubMed  CAS  Google Scholar 

  • Khan W., El Touny S., and Hannun Y. A. (1991). Arachidonic and cis-unsaturated fatty acids induce selective platelet substrate phosphorylation through activation of cytosolic protein kinase C. FEBS Lett. 292:98–102.

    PubMed  CAS  Google Scholar 

  • Kihara A. and Igarashi Y. (2004). Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol. Biol. Cell 15:4949–4959.

    PubMed  CAS  Google Scholar 

  • Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.

    PubMed  CAS  Google Scholar 

  • Kim E. J., Park K. S., Chung S. Y., Sheen Y. Y., Moon D. C., Song Y. S., Kim K. S., Song S., Yun Y. P., Lee M. K., Oh K. W., Yoon D. Y., and Hong J. T. (2003). Peroxisome proliferator-activated receptor-gamma activator 15-deoxy-Delta12,14-prostaglandin J2 inhibits neuroblastoma cell growth through induction of apoptosis: association with extracellular signal-regulated kinase signal pathway. J Pharmacol Exp Ther. 307:505–517.

    PubMed  CAS  Google Scholar 

  • Kirsch C., Eckert G. P., and Mueller W. E. (2002). Cholesterol attenuates the membrane perturbing properties of beta-amyloid peptides. Amyloid - J. Prot. Folding Disorders 9:149–159.

    CAS  Google Scholar 

  • Koletzko B., Agostoni C., Carlson S. E., Clandinin T., Hornstra G., Neuringer M., Uauy R., Yamashiro Y., and Willatts P. (2001). Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr. 90:460–464.

    PubMed  CAS  Google Scholar 

  • Kolko M., Rodriguez de Turco E. B., Diemer N. H., and Bazan N. G. (2002). Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. NeuroReport 13:1963–1966.

    PubMed  CAS  Google Scholar 

  • Kölsch H., Ludwig M., Lütjohann D., and Rao M. L. (2001). Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17 beta. J. Neural Transm. 108:475–488.

    PubMed  Google Scholar 

  • Kölsch H., Lütjohann D., Tulke A., Björkhem I., and Rao M. L. (1999). The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res. 818:171–175.

    PubMed  Google Scholar 

  • Koudinov A. R. and Koudinova N. V. (2003). Amyloid beta protein restores hippocampal long term potentiation: a central role for cholesterol? Neurobiol. Lipids 1:45–56.

    Google Scholar 

  • Kronke M. and Adam-Klages S. (2002). Role of caspases in TNF-mediated regulation of cPLA2. FEBS Lett. 531:18–22.

    PubMed  CAS  Google Scholar 

  • Kuijpers T. W., Van den Berg J. M., Tool A. T. J., and Roos D. (2001). The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase. Clin. Exp. Immunol. 123:412–420.

    PubMed  CAS  Google Scholar 

  • Lahaie I., Hardy P., Hou X., Hassessian H., Asselin P., Lachapelle P., Almazan G., Varma D. R., Morrow J. D., Roberts L. J., II, and Chemtob S. (1998). A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2α on retinal vessels. Am. J. Physiol. 274:R1406–R1416.

    PubMed  CAS  Google Scholar 

  • Lang P. A., Kempe D. S., Tanneur V., Eisele K., Klarl B. A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S. M., Lang F., and Wieder T. (2005). Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243.

    PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.

    PubMed  CAS  Google Scholar 

  • Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55:1875–1881.

    PubMed  CAS  Google Scholar 

  • Lee H., Villacreses N. E., Rapoport S. I., and Rosenberger T. A. (2004). In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J. Neurochem. 91:936–945.

    PubMed  CAS  Google Scholar 

  • Liu W., Wang H.J., wang L.P., Liu S.L., and Wang J.Y. (2007). Formation of high-molecular-weight protein adducts by methyl docosahexaenoate peroxidation products. Biochim. Biophys. Acta-Proteins and Proteomics 1774:258–266.

    CAS  Google Scholar 

  • Lizard G., Miguet C., Bessède G., Monier S., Gueldry S., Neel D., and Gambert P. (2000). Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28:743–753.

    PubMed  CAS  Google Scholar 

  • Ma Y., Pitson S., Hercus T., Murphy J., Lopez A., and Woodcock J. (2005). Sphingosine activates protein kinase A type II by a novel cAMP-independent mechanism. J. Biol. Chem. 280:26011–26017.

    PubMed  CAS  Google Scholar 

  • MacEwan D. J. (1996). Elevated cPLA2 levels as a mechanism by which the p70 TNF and p75 NGF receptors enhance apoptosis. FEBS Lett. 379:77–81.

    PubMed  CAS  Google Scholar 

  • Machado F. S., Johndrow J. E., Esper L., Dias A., Bafica A., Serhan C. N., and Aliberti J. (2006). Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature Med. 12:330–334.

    PubMed  CAS  Google Scholar 

  • Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.

    PubMed  CAS  Google Scholar 

  • Maeba R. and Ueta N. (2004). A novel antioxidant action of ethanolamine plasmalogens in lowering the oxidizability of membranes. Biochem. Soc. Trans. 32:141–143.

    PubMed  CAS  Google Scholar 

  • Malaplate-Armand C., Florent-Béchard S., Youssef I., Koziel V., Sponne I., Kriem B., Leininger-Muller B., Olivier J. L., Oster T., and Pillot T. (2006). Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol. Dis. 23:178–189.

    PubMed  CAS  Google Scholar 

  • Mamidipudi V. and Wooten M. W. (2002). Dual role for p75(NTR) signaling in survival and cell death: can intracellular mediators provide an explanation? J. Neurosci. Res. 68:373–384.

    CAS  Google Scholar 

  • Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J. M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.

    PubMed  CAS  Google Scholar 

  • Marchesini N. and Hannun Y. A. (2004). Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol. 82:27–44.

    PubMed  CAS  Google Scholar 

  • Mathias S., Peña L. A., and Kolesnick R. N. (1998). Signal transduction of stress via ceramide. Biochem. J. 335 (Pt 3):465–480.

    PubMed  CAS  Google Scholar 

  • Mauch D. H., Nägler K., Schumacher S., Göritz C., Müller E. C., Otto A., and Pfrieger F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357.

    PubMed  CAS  Google Scholar 

  • Mebarek S., Komati H., Naro F., Zeiller C., Alvisi M., Lagarde M., Prigent A. F., and Némoz G. (2007). Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation. J. Cell Sci. 120:407–416.

    PubMed  CAS  Google Scholar 

  • Megha S. P., and London, E. (2004). Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279:9997–10004.

    PubMed  CAS  Google Scholar 

  • Megha Sawatzki P., Kolter T., Bittman R., and London E. (2007). Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochim. Biophys. Acta 1768:2205–2212.

    Google Scholar 

  • Megidish T. Cooper J., Zhang L., Fu H., and Hakomori S. (1998). A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein. J. Biol. Chem. 273:21834–21845.

    PubMed  CAS  Google Scholar 

  • Meyer S. G. E., Karow W., and De Groot H. (2005). 2n-fatty acids from phosphatidylcholine label sphingolipids – A novel role of phospholipase A2? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1735:68–78.

    CAS  Google Scholar 

  • Millanvoye-Van Brussel E., Topal G., Brunet A., Do Phaw T., Deckert V., Rendu F., and David-Dufilho M. (2004). Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem. J. 380:533–539.

    PubMed  CAS  Google Scholar 

  • Minami T., Nishihara I., Uda R., Ito S., Hyodo M., and Hayaishi O. (1994). Characterization of EP-receptor subtypes involved in allodynia and hyperalgesia induced by intrathecal administration of prostaglandin E2 to mice. Br. J. Pharmacol. 112:735–740.

    PubMed  CAS  Google Scholar 

  • Miura A., Kajita K., Ishizawa M., Kanoh Y., Kawai Y., Natsume Y., Sakuma H., Yamamoto Y., Yasuda K., and Ishizuka T. (2003). Inhibitory effect of ceramide on insulin-induced protein kinase Czeta translocation in rat adipocytes. Metabolism 52:19–24.

    PubMed  CAS  Google Scholar 

  • Mohri I., Taniike M., Taniguchi H., Kanekiyo T., Aritake K., Inui T., Fukumoto N., Eguchi N., Kushi A., Sasai H., Kanaoka Y., Ozono K., Narumiya S., Suzuki K., and Urade Y. (2006). Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci. 26:4383–4393.

    PubMed  CAS  Google Scholar 

  • Morrow J. D. (2006). The isoprostanes – Unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Curr. Pharmaceut. Design 12:895–902.

    CAS  Google Scholar 

  • Morrow J. D., Awad J. A., Wu A., Zackert W. E., Daniel V. C., and Roberts L. J., II (1996). Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J. Biol. Chem. 271:23185–23190.

    PubMed  CAS  Google Scholar 

  • Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.

    PubMed  CAS  Google Scholar 

  • Muller G., Ayoub M., Storz P., Rennecke J., Fabbro D., and Pfizenmaier K. (1995). PKC zeta is a molecular switch in signal transduction of TNF-α, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14:1961–1969.

    PubMed  CAS  Google Scholar 

  • Murakami M. and Kudo I. (2006). Prostaglandin E synthase: a novel drug target for inflammation and cancer. Curr. Pharmaceut. Design 12:943–954.

    CAS  Google Scholar 

  • Musiek E.S., Breeding R.S., Milne G.L., Zanoni G., Morrow J.D., and McLaughin B. (2006). Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. J. Neurochem. 97:1301–1313.

    PubMed  CAS  Google Scholar 

  • Nakajima K., Tohyama Y., Kohsaka S., and Kurihara T. (2002). Ceramide activates microglia to enhance the production/secretion of brain-derived neurotrophic factor (BDNF) without induction of deleterious factors in vitro. J. Neurochem. 80:697–705.

    PubMed  CAS  Google Scholar 

  • Nakamura H., Hirabayashi T., Shimizu M., and Murayama T. (2006). Ceramide-1-phosphate activates cytosolic phospholipase A2α directly and by PKC pathway. Biochem. Pharmacol. 71:850–857.

    PubMed  CAS  Google Scholar 

  • Nakamura H., Hirabayashi T., Someya A., Shimizu M., and Murayama T. (2004). Inhibition of arachidonic acid release and cytosolic phospholipase A2α activity by D-erythro-sphingosine. Eur. J. Pharmacol. 484:9–17.

    PubMed  CAS  Google Scholar 

  • Nakayama Y., Omote K., Kawamata T., and Namiki A. (2004). Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn. Brain Res. 1010:62–68.

    PubMed  CAS  Google Scholar 

  • Narumiya S., Sugimoto Y., and Ushikubi F. (1999). Prostanoid receptors: structures, properties, and functions. Physiol Rev. 79:1193–1226.

    PubMed  CAS  Google Scholar 

  • Nelson T. J. and Alkon D. L. (2005). Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem. 280:7377–7387.

    PubMed  CAS  Google Scholar 

  • Nodai A., Machida T., Izumi S., Hamaya Y., Kohno T., Igarashi Y., Iizuka K., Minami M., and Hirafuji M. (2007). Sphingosine 1-phosphate induces cyclooxygeriase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80:1768–1776.

    PubMed  CAS  Google Scholar 

  • Norel X. and Brink C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: recent clues. Pharmacol. Ther. 103:81–94.

    PubMed  CAS  Google Scholar 

  • Ohanian J. and Ohanian V. (2001). Sphingolipids in mammalian cell signalling. Cell Mol. Life Sci. 58:2053–2068.

    PubMed  CAS  Google Scholar 

  • Omote K., Yamamoto H., Kawamata T., Nakayama Y., and Namiki A. (2002). The effects of intrathecal administration of an antagonist for prostaglandin E receptor subtype EP1 on mechanical and thermal hyperalgesia in a rat model of postoperative pain. Anesth. Analg. 95:1708–1712, table.

    PubMed  CAS  Google Scholar 

  • Opere C. A., Zheng W. D., Huang J. F., Adewale A., Kruglet M., and Ohia S. E. (2005). Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: role of arachidonic acid metabolites. Neurochem. Res. 30:129–137.

    PubMed  CAS  Google Scholar 

  • Park E. J., Park S. Y., Joe E. H., and Jou I. (2003). 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem. 278:14747–14752.

    PubMed  CAS  Google Scholar 

  • Park E. J., Suh M., Thomson A. B. R., Ramanujam K. S., and Clandinin M. T. (2006). Dietary gangliosides increase the content and molecular percentage of ether phospholipids containing 20:4n-6 and 22:6n-3 in weanling rat intestine. J. Nutr. Biochem. 17:337–344.

    PubMed  CAS  Google Scholar 

  • Patrignani P., Tacconelli S., Sciulli M. G., and Capone M. L. (2005). New insights into COX-2 biology and inhibition. Brain Res. Rev. 48:352–359.

    PubMed  CAS  Google Scholar 

  • Pawelczyk T., and Matecki A. (1997). Structural requirements of phospholipase C delta1 for regulation by spermine, sphingosine and sphingomyelin. Eur. J. Biochem. 248:459–465.

    PubMed  CAS  Google Scholar 

  • Perry R. J. and Ridgway N. D. (2005). Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1734:220–234.

    CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Spiegel S., Roddy P., Hannun Y. A., and Chalfant C. E. (2003). Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J. Biol. Chem. 278:38206–38213.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J. H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004a). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J. Biol. Chem. 279:11320–11326.

    Google Scholar 

  • Pettus B. J., Chalfant C. E., and Hannun Y. A. (2004b). Sphingolipids in inflammation: roles and implications. Curr. Mol. Med. 4:405–418.

    Google Scholar 

  • Pfrieger F. W. (2003). Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? BioEssays 25:72–78.

    PubMed  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Pyne S. (2004). Lysolipids: sphingosine 1-phosphate and lysophosphatidic acid. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 85–106.

    Google Scholar 

  • Ramstedt B. and Slotte J. P. (2006). Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim. Biophys. Acta Biomembr. 1758:1945–1956.

    CAS  Google Scholar 

  • Rebeck G. W. (2004). Cholesterol efflux as a critical component of Alzheimer's disease pathogenesis. J. Mol. Neurosci. 23:219–224.

    PubMed  CAS  Google Scholar 

  • Reiss A. B., Siller K. A., Rahman M. M., Chan E. S. L., Ghiso J., and De Leon M. J. (2004). Cholesterol in neurologic disorders of the elderly: stroke and Alzheimer's disease. Neurobiol. Aging 25:977–989.

    PubMed  CAS  Google Scholar 

  • Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.

    PubMed  CAS  Google Scholar 

  • Roux P. P. and Barker P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67:203–233.

    PubMed  CAS  Google Scholar 

  • Sato T., Kageura T., Hashizume T., Hayama M., Kitatani K., and Akiba S. (1999). Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J. Biochem. (Tokyo) 125:96–102.

    CAS  Google Scholar 

  • Sawai H., Domae N., and Okazaki T. (2005). Current status and perspectives in ceramide-targeting molecular medicine. Curr. Pharmaceut. Design 11:2479–2487.

    CAS  Google Scholar 

  • Schwab J. M. and Serhan C. N. (2006). Lipoxins and new lipid mediators in the resolution of inflammation. Curr. Opin. Pharmacol. 6:414–420.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (1994). Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212:1–25.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73:141–162.

    PubMed  CAS  Google Scholar 

  • Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. and Levy B. (2003). Novel pathways and endogenous mediators in anti-inflammation and resolution. Chem. Immunol. Allergy 83:115–145.

    PubMed  CAS  Google Scholar 

  • Seyb K. I., Ansar S., Li G. B., Bean J., Michaelis M. L., and Dobrowsky R. T. (2007). p35/Cyclin-dependent kinase 5 is required for protection against β-amyloid-induced cell death but not tau phosphorylation by ceramide. J. Mol. Neurosci. 31:23–35.

    PubMed  CAS  Google Scholar 

  • Sheng W. W., Li C. T., Zhang W. P., Yuan Y. M., Hu H., Fang S. H., Zhang L., and Wei E. Q. (2006). Distinct roles of CysLT1 and CysLT2 receptors in oxygen glucose deprivation-induced PC12 cell death. Biochem. Biophys. Res. Commun. 346:19–25.

    PubMed  CAS  Google Scholar 

  • Simons K. and Ikonen E. (2000). How cells handle cholesterol. Science 290:1721–1726.

    PubMed  CAS  Google Scholar 

  • Singh D. K., Gesquiere L. R., and Subbaiah P. V. (2007). Role of sphingomyelin and ceramide in the regulation of the activity and fatty acid specificity of group V secretory phospholipase A2. Arch. Biochem. Biophys. 459:280–287.

    PubMed  CAS  Google Scholar 

  • Singh D. K. and Subbaiah P. V. (2007). Modulation of the activity and arachidonic acid selectivity of group X secretory phospholipase A2 by sphingolipids. J. Lipid Res. 48:683–692.

    PubMed  CAS  Google Scholar 

  • Smith E. R. and Merrill A. H., Jr. (1995). Differential roles of de novo sphingolipid biosynthesis and turnover in the "burst" of free sphingosine and sphinganine, and their 1-phosphates and N-acyl-derivatives, that occurs upon changing the medium of cells in culture. J. Biol. Chem. 270:18749–18758.

    PubMed  CAS  Google Scholar 

  • Smith W. L. and Merrill A. H., Jr. (2002). Sphingolipid metabolism and signaling minireview series. J. Biol. Chem. 277:25841–25842.

    PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Song M. S. and Posse de Chaves E. I. (2003). Inhibition of rat sympathetic neuron apoptosis by ceramide. Role of p75NTR in ceramide generation. Neuropharmacology 45:1130–1150.

    CAS  Google Scholar 

  • Subramanian P., Stahelin R. V., Szulc Z., Bielawska A., Cho W., and Chalfant C. E. (2005). Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2α and enhances the interaction of the enzyme with phosphatidylcholine. J. Biol. Chem. 280:17601–17607.

    PubMed  CAS  Google Scholar 

  • Sun G. Y., Xu J., Jensen M. D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.

    PubMed  CAS  Google Scholar 

  • Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J. D., Roberts L. J., Hoover R. L., and Badr K. F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2α, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 90:136–141.

    PubMed  CAS  Google Scholar 

  • Terova B., Heczko R., and Slotte J. P. (2005). On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine. Biophys. J. 88:2661–2669.

    PubMed  CAS  Google Scholar 

  • Tillman T. S. and Cascio M. (2003). Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys. 38:161–190.

    PubMed  CAS  Google Scholar 

  • Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18:563–570.

    PubMed  Google Scholar 

  • Vaena de Avalos S., Jones J. A., and Hannun Y. A. (2004). Ceramides. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 135–167.

    Google Scholar 

  • Vanags D. M., Larsson P., Feltenmark S., Jakobsson P. J., Orrenius S., Claesson H. E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Differ. 4:479–486.

    PubMed  CAS  Google Scholar 

  • Vance J. E., Hayashi H., and Karten B. (2005). Cholesterol homeostasis in neurons and glial cells. Semin. Cell Dev. Biol. 16:193–212.

    PubMed  CAS  Google Scholar 

  • Velázquez E., Santos A., Montes A., Blázquez E., and Ruiz-Albusac J. M. (2006). 25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes. Neuropharmacology 51:229–237.

    PubMed  Google Scholar 

  • Vigh L., Escriba P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horvath I., and Harwood J. L. (2005). The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog. Lipid Res. 44:303–344.

    PubMed  CAS  Google Scholar 

  • Waeber C., Blondeau N., and Salomone S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect. 17:365–382.

    PubMed  CAS  Google Scholar 

  • Wang M. L., Huang X. J., Fang S. H., Yuan Y. M., Zhang W. P., Lu Y. B., Ding Q., and Wei E. Q. (2006). Leukotriene D4 induces brain edema and enhances CysLT2 receptor- mediated aquaporin 4 expression. Biochem. Biophys. Res. Commun. 350:399–404.

    PubMed  CAS  Google Scholar 

  • Waschbisch A., Fiebich B. L., Akundi R. S., Schmitz M. L., Hoozemans J. J. M., Candelario-Jalil E., Virtainen N., Veerhuis R., Slawik H., Yrjanheikki J., and Hull M. (2006). Interleukin-1 beta-induced expression of the prostaglandin E2-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB. J. Neurochem. 96:680–693.

    PubMed  CAS  Google Scholar 

  • Wenk M. R. (2005). The emerging field of lipidomics. Nature Rev. Drug Discov. 4:594–610.

    CAS  Google Scholar 

  • Woo C. H., Eom Y. W., Yoo M. H., You H. J., Han H. J., Song W. K., Yoo Y. J., Chun J. S., and Kim J. H. (2000). Tumor necrosis factor-α generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J. Biol. Chem. 275:32357–32362.

    PubMed  CAS  Google Scholar 

  • Xin C. Y., Ren S. Y., Kleuser B., Shabahang S., Eberhardt W., Radeke H., Schäfer-Korting M., Pfeilschifter J., and Huwiler A. (2004). Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-β-induced cell responses. J. Biol. Chem. 279:35255–35262.

    PubMed  CAS  Google Scholar 

  • Xu F. Y., Kelly S. L., and Hatch G. M. (1999). N-Acetylsphingosine stimulates phosphatidylglycerolphosphate synthase activity in H9c2 cardiac cells. Biochem J. 337:483–490.

    PubMed  CAS  Google Scholar 

  • Yacoubian S. and Serhan C.N. (2007). New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases Nature Clinical Practice Rheumatology 3:570–579.

    PubMed  CAS  Google Scholar 

  • Yamada K. and Sakane F. (1993). The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. Biochim. Biophys. Acta Lipids Lipid Metab. 1169:211–216.

    CAS  Google Scholar 

  • Yanagisawa K. (2002). Cholesterol and pathological processes in Alzheimer's disease. J. Neurosci. Res. 70:361–366.

    PubMed  CAS  Google Scholar 

  • Yu Z. F., Nikolova-Karakashian M., Zhou D. H., Cheng G. J., Schuchman E. H., and Mattson M. P. (2000). Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15:85–97.

    PubMed  CAS  Google Scholar 

  • Zhang J. and Rivest S. (2001). Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J. Neurochem. 76:855–864.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Interplay Among Glycerophospholipid, Sphingolipid, and Cholesterol-Derived Lipid Mediators in Brain: A Matter of Life and Death. In: Hot Topics in Neural Membrane Lipidology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09693-3_2

Download citation

Publish with us

Policies and ethics