Skip to main content

SRB measures for partially hyperbolic systems whose central direction is mostly expanding

  • Chapter
The Theory of Chaotic Attractors

Abstract

We construct Sinai-Ruelle-Bowen (SRB) measures supported on partially hyperbolic sets of diffeomorphisms — the tangent bundle splits into two invariant subbundles, one of which is uniformly contracting — under the assumption that the complementary subbundle is non-uniformly expanding. If the rate of expansion (Lyapunov exponents) is bounded away from zero, then there are only finitely many SRB measures. Our techniques extend to other situations, including certain maps with singularities or critical points, as well as diffeomorphisms having only a dominated splitting (and no uniformly hyperbolic subbundle).

Work carried out at the Laboratoire de Topologie, CNRS-UMR 5584, Dijon, and IMPA, Rio de Janeiro. Partially supported by IMPA and PRONEX-Dynamical Systems, Brazil, Université de Bourgogne, France, and Praxis XXI-Física Matemática and Centro de Matemática da Universidade do Porto, Portugal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. S. Afraimovich, V. V. Bykov, L. P. Shil’nikov. On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR, 234: 336–339, 1977

    Google Scholar 

  2. J. F. Alves. SRB measures for nonhyperbolic systems with multidimensional expansion. PhD thesis, IMPA, 1997. To appear Ann. Sci. École Norm. Sup.

    Google Scholar 

  3. M. Benedicks, L. Carleson. The dynamics of the Hénon map. Annals of Math., 133: 73–169, 1991

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bonatti, L. J. Díaz. Nonhyperbolic transitive diffeomorphisms. Annals of Math., 143: 357–396, 1996

    Article  MATH  Google Scholar 

  5. C. Bonatti, L. J. Diaz, E. Pujals. A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Preprint, 1999

    Google Scholar 

  6. R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lect. Notes in Math. Springer Verlag, 1975

    Google Scholar 

  7. M. Brin, Ya. Pesin. Partially hyperbolic dynamical systems. Izv. Acad. Nauk. SSSR, 1: 177–212, 1974

    Google Scholar 

  8. C. Bonatti, A. Pumariño, M. Viana. Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris, 325, Série 1: 883–888, 1997

    Article  Google Scholar 

  9. R. Bowen, D. Ruelle. The ergodic theory of Axiom A flows. Invent. math., 29: 181–202, 1975

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Benedicks, M. Viana. Solution of the basin problem for Hénon-like attractors. Preprint, 1999

    Google Scholar 

  11. C. Bonatti, M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel Journal Math., 1999. To appear

    Google Scholar 

  12. M. Benedicks, L.-S. Young. Absolutely continuous invariant measures and ran-dom perturbations for certain one-dimensional maps. Ergod. Th. and Dynam. Sys., 12: 13–37, 1992

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Carvalho. Sinai-Ruelle-Bowen measures for n-dimensional derived from Anosov diffeomorphisms. Ergod. Th. and Dynam. Sys., 13: 21–44, 1993

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Castro. Backward inducing and exponential decay of correlations for partially hyperbolic attractors with mostly contracting central direction. PhD thesis, IMPA, 1998

    Google Scholar 

  15. D. Dolgopyat. On dynamics of mostly contracting diffeomorphisms. Preprint,1998

    Google Scholar 

  16. L. J. Díaz, E. Pujals, R. Ures. Partial hyperbolicity and robust transitivity. Acta Math., 1999. To appear

    Google Scholar 

  17. M. Grayson, C. Pugh, M. Shub. Stably ergodic diffeomorphisms. Annals of Math., 140: 295–329, 1994

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Guckenheimer, R. F. Williams. Structural stability of Lorenz attractors. Publ. Math. IRES, 50: 59–72, 1979

    MathSciNet  MATH  Google Scholar 

  19. M. Hirsch, C. Pugh, M. Shub. Invariant manifolds, volume 583 of Lect. Notes in Math. Springer Verlag, 1977

    Google Scholar 

  20. M. Jakobson. Absolutely continuous invariant measures for one-parameter fami- lies of one-dimensional maps. Comm. Math. Phys., 81: 39–88, 1981

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Kan. Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Amer. Math. Soc., 31: 68–74, 1994

    MathSciNet  MATH  Google Scholar 

  22. G. Keller. Exponents, attractors and Hopf decompositions. Ergod. Th. and Dynam. Sys., 10: 717–744, 1990

    Article  MATH  Google Scholar 

  23. F. Ledrappier. Some properties of absolutely continuous invariant measures on an interval. Ergod. Th. and Dynam. Sys., 1: 77–93, 1981

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lyubich. Almost every real quadratic map is either regular or stochastic. Preprint, 1997

    Google Scholar 

  25. R. Mañé. Contributions to the stability conjecture. Topology, 17: 383–396, 1978

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Mañé. An ergodic closing lemma. Annals of Math., 116: 503–540, 1982

    Article  MATH  Google Scholar 

  27. R. Mañé. Ergodic theory and differentiable dynamics. Springer Verlag, 1987

    Google Scholar 

  28. C. Morales, M. J. Pacifico, E. Pujals. On C1 robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris, 326, Série 1: 81–86, 1998

    Article  MathSciNet  Google Scholar 

  29. J. Palis. A global view of Dynamics and a conjecture on the denseness of finitude of attractors. Astérisque, 261: 339–351, 1999

    Google Scholar 

  30. Ya. Pesin. Families of invariant manifolds corresponding to non-zero characteristic exponents. Math. USSR. Izv., 10: 1261–1302, 1976

    Article  Google Scholar 

  31. Ya. Pesin. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Th. and Dynam. Sys., 12: 123–151, 1992

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Pliss. On a conjecture due to Smale. Diff. Uravnenija, 8: 262–268, 1972

    Google Scholar 

  33. Ya. Pesin, Ya. Sinai. Gibbs measures for partially hyperbolic attractors. Ergot Th. and Dynam. Sys., 2: 417–438, 1982

    MathSciNet  MATH  Google Scholar 

  34. C. Pugh, M. Shub. Ergodic attractors. Trans. Amer. Math. Soc., 312: 1–54, 1989

    Article  MathSciNet  MATH  Google Scholar 

  35. V.A. Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transi., 10:1–52, 1962. Trans!. from Mat. Sbornik 25 (1949), 107–150

    Google Scholar 

  36. A. Rovella. The dynamics of perturbations of the contracting Lorenz attractor. Bull. Braz. Math. Soc., 24: 233–259, 1993

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Ruelle. A measure associated with Axiom A attractors. Amer. J. Math., 98: 619–654, 1976

    Google Scholar 

  38. E. A. Sataev. Invariant measures for hyperbolic maps with singularities. Russ. Math. Surveys, 471: 191–251, 1992

    Article  MathSciNet  Google Scholar 

  39. M. Shub. Topologically transitive diffeomorphisms on T4. volume 206 of Lect. Notes in Math., page 39. Springer Verlag, 1971

    Google Scholar 

  40. Ya. Sinai. Gibbs measure in ergodic theory. Russian Math. Surveys, 27: 21–69, 1972

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Shub, A. Wilkinson. Pathological foliations and removable zero exponents. Preprint, 1998

    Google Scholar 

  42. W. Tucker. The lorenz attractor exists. C. R. Acad. Sci. Paris, 328, Série I: 1197 1202, 1999

    Google Scholar 

  43. M. Viana. Multidimensional nonhyperbolic attractors. Publ. Math. IRES, 85: 6996, 1997

    Google Scholar 

  44. L.-S. Young. Large deviations in dynamical systems. Trans. Amer. Math. Soc., 318: 525–543, 1990

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alves, J.F., Bonatti, C., Viana, M. (2000). SRB measures for partially hyperbolic systems whose central direction is mostly expanding. In: Hunt, B.R., Li, TY., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21830-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21830-4_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2330-1

  • Online ISBN: 978-0-387-21830-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics