Skip to main content

Abstract

The phytochemistry of the genus Piper is rich in terms of numbers of compounds discovered, but given the diversity of this genus and the intraspecific diversity of secondary metabolites in those species that have been examined, Piper chemistry has not been adequately investigated. The natural products chemistry that has been elucidated is well documented and has been the subject of extensive review (Sengupta and Ray 1987, Parmar et al. 1997). Since those reviews were published, 28 new species have been investigated (Benevides et al. 1999, Chen et al. 2002, Ciccio 1997, de Abreu et al. 2002, Dodson et al. 2000, dos Santos et al. 2001, Facundo and Morais 2003, Jacobs et al. 1999, Joshi et al. 2001, Martins et al. 1998, Masuoka et al. 2002, McFerren and Rodriquez 1998, Moreira et al. 1998, Mundina et al. 1998, Srivastava et al. 2000a, Stohr et al. 2001, Terreaux et al. 1998, Torquilho et al. 2000, Vila et al. 2001, 2003, Wu et al. 1997), and 69 compounds new to Piper have been discovered (Adesina et al. 2002, Alecio et al. 1998, Baldoqui et al. 1999, Banerji et al. 1993, 2002b, Boll et al. 1994, Chen et al. 2002, Ciccio 1997, Da Cunha and Chaves 2001, Das and Kashinatham 1998, daSilva et al. 2002, de Araújo-Júnior et al. 1997, Dodson et al. 2000, Gupta et al. 1999, Jacobs et al. 1999, Joshi et al. 2001, Martins et al. 1998, Masuoka et al. 2002, Menon et al. 2000, 2002, Moreira et al. 1998, 2000, Mundina et al. 1998, Navickiene et al. 2000, Pande et al. 1997, Parmar et al. 1998, Santos and Chaves 1999a,b, Santos et al. 1998, Seeram et al. 1996, Siddiqui et al. 2002, Srivastava et al. 2000a,b, Stohr et al. 1999, Terreaux et al. 1998, Wu et al. 2002a,b, Zeng et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addae-Mensah, I., Torto, F. G., Dimonyeka, C. I., Baxter, I., and Sanders, J. K. M. (1977). Novel amide alkaloids from the roots of Piper guineense. Phytochemistry 16:757–759.

    CAS  Google Scholar 

  • Adesina, S. K., Abebayo, A. S., Adesina, S. K. O., and Groning, R. (2002). GC/MS investigations of the minor constituents of Piper guineense stem. Pharmazie 57:622–627.

    PubMed  CAS  Google Scholar 

  • Alecio, A. C., Bolzani, V. D., Young, M. C. M., Kato, M. J., and Furlan, M. (1998). Antifungal amide from leaves of Piper hispidum. Journal of Natural Products 61:637–639.

    PubMed  CAS  Google Scholar 

  • Arai, Y., Masuda, T., Yoneda, S., Masaki, Y., and Shiro, M. (2000). Asymmetric synthesis of (+)-dihyrokawain5-ol. Journal of Organic Chemistry 65:258–262.

    PubMed  CAS  Google Scholar 

  • Atal, C. K., Dhar, K. L., Gupta, O. P., and Gupta, S. C. (1977). Synergists for Pyrethrum: Synthetic analogues of some Piper compounds. Indian Journal of Experimental Biology 15(12):1230–1232.

    PubMed  CAS  Google Scholar 

  • Ayres, M. P., Clausen, T. P., MacLean, J., Redman, A. M., and Reichardt, P. B. (1997). Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.

    Google Scholar 

  • Baldoqui, D. C., Kato, M. J., Cavalheiro, A. J., Bolzani, V. D., Young, M. C. M., and Furlan, M. (1999). A chromene and prenylated benzoic acid from Piper aduncum. Phytochemistry 51:899–902.

    CAS  Google Scholar 

  • Baldwin, I. T., and Schultz, J. C. (1988). Phylogeny and the patterns of leaf phenolics in gap-adapted and forestadapted Piper and Miconia understory shrubs. Oecologia 75:105–109.

    Google Scholar 

  • Balick, M. J., Elisabetsky, E., and Laird, S. A. (1995). Medicinal Resources of the Tropical Forest: Biodiversity and Its Importance to Human Health. Columbia University Press, New York.

    Google Scholar 

  • Banerji, A., and Pal, S. C. (1983). Total synthesis of sylvamide, a Piper amide. Phytochemistry 22(4):1028–1030.

    CAS  Google Scholar 

  • Banerji, A., Bandyopadhyay, D., Sarkar, M., Siddhanta, A. K., Pal, S. C., Ghosh, S., Abraham, K., and Shoolery, J. N. (1985). Structural and synthetic studies on the refractamides—Amide constituents of Piper retrofractum. Phytochemistry 24(2):279–284.

    CAS  Google Scholar 

  • Banerji, A., Ray, R., Bandyopadhyay, D., Basu, S., Maiti, S., Bose, A., and Majumder, P. L. (1993). Structure and synthesis of aurantiamide benzoate-A modified dipeptide. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry 32:776–778.

    Google Scholar 

  • Banerji, A., Banerjee, T., Sengupta, R., Sengupta, P., Das, C., and Sahu, A. (2002a). Synthetic and spectroscopic studies of structural analogs of Piper amides—The 5-aryl-2E,4E-pentadienamides. Journal of the Indian Chemical Society 79(11):876–883.

    CAS  Google Scholar 

  • Banerji, A., Sarkar, M., Datta, R., Sengupta, P., and Abraham, K. (2002b). Amides from Piper brachystachyum and Piper retrofractum. Phytochemistry 59:897–901.

    PubMed  CAS  Google Scholar 

  • Benevides, P. J. C., Sartorelli, P., and Kato, M. J. (1999). Phenylpropanoids and neolignans from Piper regnellii. Phytochemistry 52:339–343.

    CAS  Google Scholar 

  • Bernard, C. B., Krishnamurty, H. G., Chauret, D., Durst, T., Philogene, B. J. R., Sanchezvindas, P., Hasbun, C., Poveda, L., Sanroman, L., and Arnason, J. T. (1995). Insecticidal defenses of piperaceae from the Neotropics. Journal of Chemical Ecology 21:801–814.

    CAS  Google Scholar 

  • Boll, P. M., Parmar, V. S., Tyagi, O. D., Prasad, A., Wengel, J., and Olsen, C. E. (1994). Some recent isolation studies from potential insecticidal Piper species. Pure and Applied Chemistry 66:2339–2342.

    CAS  Google Scholar 

  • Bryant, J. P., Chapin, F. S., III, and Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    CAS  Google Scholar 

  • Capron, M. A., and Wiemer, D. F. (1996). Piplaroxide an ant-repellent piperidine epoxide from Piper tuburculatum. Journal of Natural Products 59:794–795.

    CAS  Google Scholar 

  • Chandhoke, N., Gupta, S., and Dhar, S. (1978). Interceptive activity of various species of Piper, their natural amides and semi-synthetic analogs. Indian Journal of Pharmaceutical Sciences 40(4):113–116.

    CAS  Google Scholar 

  • Chatterjee, A., and Dutta, C. P. (1967). Alkaloids of Piper longum Linn-I structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron 23:1769–1781.

    PubMed  CAS  Google Scholar 

  • Chen, J. J., Huang, Y. C., Chen, Y. C., Huang, Y. T., Want, S. W., Peng, C. Y., Teng, C. M., and Chen, I. S. (2002). Cytotoxic amides from Piper sintenense. Planta Medica 68:980–985.

    PubMed  CAS  Google Scholar 

  • Ciccio, J. F. (1997). Essential oil components in leaves and stems of Piper bisasperatum (Piperaceae). Revista de Biologia Tropical 45:35–38.

    Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F.S. (1985). Resource availability and plant antiherbivore defense. Science 230:895–899.

    PubMed  CAS  Google Scholar 

  • Cornell, H. V., and Hawkins, B. A. (2003). Herbivore responses to plant secondary compounds: A test of phytochemical coevolution theory. American Naturalist 161:507–522.

    PubMed  Google Scholar 

  • Cotton, C. M. (1996). Ethnobotany: Principles and Applications. John Wiley & Sons Ltd., West Sussex, England.

    Google Scholar 

  • Crombie, L., Pattenden, G., and Stemp, G. (1977). Synthesis of wisanine, a new piperine amide from Piper guineense. Phytochemistry 16:1437–1438.

    CAS  Google Scholar 

  • Da Cunha, E. V. L., and Chaves, M. C. D. (2001). Two amides from Piper tuberculatum fruits. Fitoterapia 72:197–199.

    Google Scholar 

  • da Silva, R. V., Navickiene, H. M. D., Kato, M. J., Bolzania, V. D. S., Meda, C. I., Young, M. C. M., and Furlan, M. (2002). Antifungal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 59:521–527.

    Google Scholar 

  • Das, B., and Madhusudhan, P. (1998). Transformation of the conjugated dienamide system of some natural alkamides to the fi ,fl-unsaturated amide function using Zn/HOAc. Tetrahedron Letters 39(49):9099–9100.

    CAS  Google Scholar 

  • Das, B., and Kashinatham, A. (1998). Futoamide from Piper longum. Fitoterapia 69:548.

    CAS  Google Scholar 

  • de Abreu, A. M., Sevegnani, L., Machicado, A. R., Zimermann, D., and Rebelo, R. A. (2002). Piper mikanianum (Kunth) Steudel from Santa Catarina, Brazil-A new source of safrole. Journal of Essential Oil Research 14:361–363.

    Google Scholar 

  • de Araujo-Júnior, J. X., DaCunha, E. V. L., Chaves, M. C. D., and Gray, A. I. (1997). Piperdardine, a piperidine alkaloid from Piper tuberculatum. Phytochemistry 44:559–561.

    Google Scholar 

  • de Araujo-Júnior, J. X., Barreiro, E. J., Parente, J. P., and Fraga, C. A. M. (1999). Synthesis of piperamides and new analogues from natural safrole. Synthetic Communications 29:263–273.

    Google Scholar 

  • de Araújo-Júnior, J. X., de Mattos Duarte, C., de O.Chaves, M. C., Parente, J. P., Fraga, C. A. M., and Barreiro, E. J. (2001). Synthesis of natural amide alkaloid piperdardine and a new bioactive analog. Synthetic Communications 31(1):117–123.

    Google Scholar 

  • de Mattos Duarte, C., de Araújo Junior, J. X., Parente, J. P., and Barreiro, E. J. (1999). Synthesis of new hypotensive piperamides analogues. Revista Brasileira de Farmácia 80(1/2):35–37.

    Google Scholar 

  • de Paula, V. F., Barbosa, L. C. D., Demuner, A. J., Pilo-Veloso, D., and Picanco, M. C. (2000). Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Management Science 56:168–174.

    Google Scholar 

  • Dodson, C. D., Dyer, L. A., Searcy, J., Wright, Z., and Letourneau, D. K. (2000). Cenocladamide, a dihydropyridone alkaloid from Piper cenocladum. Phytochemistry 53:51–54.

    PubMed  CAS  Google Scholar 

  • dos Santos, P. R. D., Moreira, D. D., Guimaraes, E. F., and Kaplan, M. A. C. (2001). Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry 58:547–551.

    PubMed  CAS  Google Scholar 

  • Dove, M. R. (1997). The banana tree at the gates: Perceptions of production of Piper nigrum (Piperaceae) in a seventeenth century Malay state. Economic Botany 51:347–361.

    Google Scholar 

  • Dyer, L. A., and Gentry, G. L. (2002). Caterpillars and parasitoids of a tropical lowland wet forest. Available from: http://www.caterpillars.org.

    Google Scholar 

  • Dyer, L. A., and Letourneau, D. K. (1999a). Trophic cascades in a complex, terrestrial community. Proceedings of the National Academy of Sciences U.S.A. 96:5072–5076.

    CAS  Google Scholar 

  • Dyer, L. A., and Letourneau, D. K. (1999b). Relative strengths of top-down and bottom-up forces in a tropical forest community. Oecologia 119:265–274.

    Google Scholar 

  • Dyer, L. A., Williams, W., Dodson, C., and Letourneau, D. K. (2000). A commensalism between Pipermarginatum Jacq. (Piperaceae) and a coccinellid beetle. Journal of Tropical Ecology 15:841–846.

    Google Scholar 

  • Dyer, L. A., Dodson, C. D., Beihoffer, J., and Letourneau, D. K. (2001). Trade offs in anti-herbivore defenses in Piper cenocladum: Ant mutualists versus plant secondary metabolites. Journal of Chemical Ecology 27:581–592.

    PubMed  CAS  Google Scholar 

  • Dyer, L. A., Dodson, C. D., Stireman, J. O., Tobler, M. A., Smilanich, A. M., Fincher, R. M., and Letourneau, D. K. (2003). Synergistic effects of three Piper amides on generalist and specialist herbivores. Journal of Chemical Ecology 29:2499–2514.

    PubMed  CAS  Google Scholar 

  • Dyer, L. A., Dodson, C. D., Letourneau, D. K., Tobler, M. A., Hsu, A., and Stireman, J. O. III. (2004). Ecological causes and consequences of variation in defensive chemistry of a Neotropical shrub. Ecology (in press).

    Google Scholar 

  • Ehrlich, P. R., and Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution 18:568–608.

    Google Scholar 

  • Facundo, V. A., and Morais, S. M. (2003). Constituents of Piper aleyreanum (Piperaceae). Biochemical Systematics and Ecology 31:111–113.

    CAS  Google Scholar 

  • Farrell, B. D., Mitter, C., and Futuyma, D. J. (1992). Diversification at the insect-plant interface. Insights from phylogenetics. Bioscience 42:34–42.

    Google Scholar 

  • Gbewonyo, W. S. K., and Candy, D. J. (1992). Chromatographic isolation of insecticidal amides from Piper guineense root. Journal of Chromatography 607:105–111.

    CAS  Google Scholar 

  • Gokhale, V. G., Phalnikar, N. L., and Bhidde, B. V. (1945). Synthetic mosquito larvacides: Part I. Journal of the University of Bombay, Science: Physical Sciences, Mathematics, Biological Sciences and Medicine 16(5):32–36.

    Google Scholar 

  • Green, T. P., Treadwell, E. M., and Wiemer, D. F. (1999). Arieianal, a prenylated benzoic acid from Piperarieianum. Journal of Natural Products 62:367–368.

    PubMed  CAS  Google Scholar 

  • Gupta, O. P., Nath, A., Gupta, S. C., and Srivastava, T. N. (1980). Preparation of semi-synthetic analogues of Piper amides and their antitubercular activity. Bulletin of Medico-Ethno-Botanical Research 1(1):99–106.

    CAS  Google Scholar 

  • Gupta, S., Jha, A., Prasad, A. K., Rajwanshi, V. K., Jain, S. C., Olsen, C. E., Wengel, J., and Parmar, V. S. (1999). A new amide, N-cinnamoylpyrrole and other constituents from Piper argyrophyllum. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry 38:823–827.

    Google Scholar 

  • Haller, H. L., McGovran, E. R., Goodhue, L. D., Sullivan, W. N. (1942). The synergistic action of sesamin with pyrethrum insecticides. Journal of Organic Chemistry 7:183–184.

    CAS  Google Scholar 

  • Harborne, J. B. (1988). Introduction to Ecological Biochemistry. Academic Press, San Diego, California.

    Google Scholar 

  • Heil, M., Delsinne, T., Hilpert, A., Schurkens, S., Andary, C., Linsenmair, K. E., Sousa, M. S., and McKey, D. (2002). Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos 99:457–468.

    CAS  Google Scholar 

  • Howard, J. J., Cazin, J., and Wiemer, D. F. (1988). Toxicity of terpenoid deterrents to the leafcutting ant Attacephalotes and its mutualistic fungus. Journal of Chemical Ecology 14:59–69.

    CAS  Google Scholar 

  • Hunter, M. D. (2001). Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: Experiments, life tables, and time-series analysis. Basic and Applied Ecology 2:295–309.

    Google Scholar 

  • Inatani, R., Nakatani, N., and Fuwa, H. (1981). Structure and synthesis of new phenolic amides from Piper nigrum L. Agricultural and Biological Chemistry 45(3):667–673.

    CAS  Google Scholar 

  • Jacobs, H., Seeram, N. P., Nair, M. G., Reynolds, W. F., and McLean, S. (1999). Amides of Piper amalago var. nigrinodum. Journal of the Indian Chemical Society 76:713–717.

    CAS  Google Scholar 

  • Jaramillo, M. A., and Manos, P. S. (2001). Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). American Journal of Botany 88:706–716.

    PubMed  CAS  Google Scholar 

  • Jenett-Siems, K., Mockenhaupt, F. P., Bienzle, U., Gupta, M. P., Eich, E. (1999). In vitro antiplasmodial activity of Central American medicinal plants. Tropical Medicine & International Health 4: 611–615.

    CAS  Google Scholar 

  • Jones, D. G. (ed.). (1998). Piperonyl Butoxide: The Insect Synergist. Academic Press, London.

    Google Scholar 

  • Joshi, B. S., Kamat, V. N., and Saksena, A. K. (1968). On the synthesis of piplartine and a synthesis of dihydropiplartine. Tetrahedron Letters 18(20):2395–2400.

    Google Scholar 

  • Joshi, A. S., Li, X. C., Nimrod, A. C., ElSohly, H. N., Walker, L. A., and Clark, A. M. (2001). Dihydrochalcones from Piper longicaudatum. Planta Medica 67:186–188.

    PubMed  CAS  Google Scholar 

  • Kaga, H., Ahmed, Z., Gotoh, K., Orito, K. (1994). New access to conjugated dien- and eneamides. Synthesis of dehydropipernonaline, pipernonaline and related biologically active amides. Synlett 607–608.

    Google Scholar 

  • Kang, I.-J., Wang, H.-M., Su, C.-H., and Chen, L.-L. (2001). Synthesis of dienamide natural products using a hypervalent iodine(III) reagent. The Chinese Pharmaceutical Journal 53:199–205.

    CAS  Google Scholar 

  • Kiuchi, F., Nakamura, N., Saitoh, M., Komagome, K., Hiramatsu, H., Takimoto, N., Akao, N., Kondo, K., and Tsuda, Y. (1997). Synthesis and nematocidal activity of aralkyl- and aralkenylamides related to Piper amide in second-stage larvae of Toxocara canis. Chemical and Pharmaceutical Bulletin 45(4):685–696.

    CAS  Google Scholar 

  • Ladenburg, A. and Scholtz, M. (1894). Synthese der Piperinsäure und des Piperins. Berichte der Deutschen chemischen Gesellschaft, 27: 2958.

    CAS  Google Scholar 

  • Laird, S. A. (1999). The botanical medicine industry. In: Kate, K. and Laird, S. A. (eds.), The Commercial Use of Biodiversity: Access to Genetic Resources and Benefit Sharing. Earthscan, London.

    Google Scholar 

  • Letourneau, D. K., and Dyer, L. A. (1998). Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology 79:1678–1687.

    Google Scholar 

  • Likhitwitayawuid, K., Ruangrungsi, N., Lange, G. L., Decicco, C. P. (1987). Studies on Thai medicinal-plants. 5. Structural elucidation and synthesis of new components isolated from Piper sarmentosum (Piperaceae). Tetrahedron 43: 3689–3694.

    CAS  Google Scholar 

  • Ma, D., and Lu, X. (1990). A convenient stereoselective synthesis of conjugated dienoic esters and amides. Tetrahedron 46(9):3189–3198.

    CAS  Google Scholar 

  • Martins, A. P., Salgueiro, L., Vila, R., Tomi, F., Canigueral, S., Casanova, J., Da Cunha, A. P., and Adzet, T. (1998). Essential oils from four Piper species. Phytochemistry 49:2019–2023.

    CAS  Google Scholar 

  • Masuoka, C., Ono, M., Ito, Y., Okawa, M., and Nohara, T. (2002). New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum. Chemical & Pharmaceutical Bulletin 50:1413–1415.

    CAS  Google Scholar 

  • McFerren, M. A., and Rodriguez, E. (1998). Piscicidal properties of piperovatine from Piper piscatorum (Piperaceae). Journal of Ethnopharmacology 60:183–187.

    PubMed  CAS  Google Scholar 

  • Menon, A. N., Padmakumari, K. P., and Jayalekshmy, A. J. (2002). Essential oil composition of four major cultivars of black pepper (Piper nigrum L.). Journal of Essential Oil Research 14:84–86.

    CAS  Google Scholar 

  • Menon, A. N., Padmakumari, K. P., Jayalekshmy, A., Gopalakrishnan, M., and Narayanan, C. S. (2000). Essential oil composition of four popular Indian cultivars of black pepper (Piper nigrum L.). Journal of Essential Oil Research 12:431–434.

    CAS  Google Scholar 

  • Miyakado, M., and Yoshioka, H. (1979). The Piperaceae amides. II: Synthesis of pipericide, a new insecticidal amide from Piper nigrum L. Agricultural and Biological Chemistry 43(11):2413–2415.

    CAS  Google Scholar 

  • Miyakado, M., Nakayama, I., and Ohno, N. (1989). Insecticidal unsaturated isobutylamides from natural products to agrochemical leads. ACS Symposium Series 387:173–187.

    Google Scholar 

  • Moen, J. H., Oksanen, L., Ericson, L., and Ekerholm, P. (1993). Grazing by food-limited microtine rodents on a productive experimental plant community: Does the “green desert” exist? Oikos 68:401–413.

    Google Scholar 

  • Moreira, D. D., Guimaraes, E. F., and Kaplan, M. A. C. (1998). Non-polar constituents from leaves of Piper lhotzkyanum. Phytochemistry 49:1339–1342.

    CAS  Google Scholar 

  • Moreira, D. D., Guimaraes, E. F., and Kaplan, M. A. C. (2000). AC-glucosylflavone from leaves of Piper lhotzkyanum. Phytochemistry 55:783–786.

    PubMed  CAS  Google Scholar 

  • Mundina, M., Vila, R., Tomi, F, Gupta, M. P., Adzet, T., Casanova, J., and Canigueral, S. (1998). Leaf essential oils of three Panamanian Piper species. Phytochemistry 47:1277–1282.

    CAS  Google Scholar 

  • Nakatani, N., Inatani, R., and Fuwa, H. (1980). Structures and syntheses of two phenolic amides from Piper nigrum L. Agricultural and Biological Chemistry 44(12):2831–2836.

    CAS  Google Scholar 

  • Navickiene, H. M. D., Alecio, A. C., Kato, M. J., Bolzani, V. D., Young, M. C. M., Cavalheiro, A. J., and Furlan, M. (2000). Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 55:621–626.

    PubMed  CAS  Google Scholar 

  • Navickiene, H. M. D., Bolzani, V. D., Kato, M. J., Pereira, A. M. S., Bertoni, B. W., Franca, S. C., and Furlan, M. (2003). Quantitative determination of anti-fungal and insecticide amides in adult plants, plantlets and callus from Piper tuberculatum by reverse-phase high-performance liquid chromatography. Phytochemical Analysis 14:281–284.

    PubMed  CAS  Google Scholar 

  • Nelson, A. C., and Kursar, T. A. (1999). Interactions among plant defense compounds: A method for analysis. Chemoecology 9:81–92.

    CAS  Google Scholar 

  • Novotny, V., Miller, S. E., Cizek, L., Leps, J., Janda, M., Basset, Y., Weiblen, G. D., and Darrow, K. (2003). Colonising aliens: Caterpillars (Lepidoptera) feeding on Piper aduncum and P. umbellatum in rainforests of Papua New Guinea. Environmental Entomology (in press).

    Google Scholar 

  • Pande, A., Shukla, Y. N., Srivastava, R., and Verma, M. (1997). 3-Methyl-5-decanoylpyridine and amides from Piper retrofractum. Indian Journal of Chemistry Section B—Organic Chemistry Including Medicinal Chemistry 36:377–379.

    Google Scholar 

  • Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E., and Boll, P. M. (1997). Phytochemistry of the genus Piper. Phytochemistry 46:597–673.

    CAS  Google Scholar 

  • Parmar, V. S., Jain, S. C., Gupta, S., Talwar, S., Rajwanshi, V. K., Kumar, R., Azim, A., Malhotra, S., Kumar, N., Jain, R., Sharma, N. K., Tyagi, O. D., Lawrie, S. J., Errington, W., Howarth, O. W., Olsen, C. E., Singh, S. K., and Wengel, J. (1998). Polyphenols and alkaloids from Piper species. Phytochemistry 49:1069–1078.

    CAS  Google Scholar 

  • Pring, B. G. (1982). Isolation and identification of amides from Piper callosum—Synthesis of pipercallosine and pipercallosidine. Journal of the Chemical Society, Perkin Transactions 1 1493–1498.

    Google Scholar 

  • Richards, J. L., Myhre, S. M., and Jay, J. I. (2001). Total synthesis of piplartine, 13-desmethylpiplartine, and cenocladamide: Three compounds isolated from Piper cenocladum. 221st National Meeting of the American Chemical Society. [Abstract]

    Google Scholar 

  • Richards, J. L., Jay, J. I., and Pidcock, W. C., Agustsdottir, S. R. (2002). Improved synthesis of piplartine, 4′-desmethylpiplartine, and cenocladamide: Three compounds isolated from Piper cenocladum. 57th Northwest Regional Meeting of the American Chemical Society. [Abstract]

    Google Scholar 

  • Rocha, S. F. R., and Ming, L. C. (1999). Piper hispidinervum: A sustainable source of safrole. In: Janick, J. (ed.), Perspectives on New Crops and New Uses. ASHS Press, Alexandria, Virginia, pp. 479–481.

    Google Scholar 

  • Rotherham, L. W., and Semple, J. E. (1998). A practical and efficient synthetic route to dihydropipercide and pipercide. Journal of Organic Chemistry 63:6667–6672.

    CAS  Google Scholar 

  • Rügheimer, L. (1882). Künstliches Piperin. Berichte der Deutschen chemischen Gesellschaft. 15: 1390–1391.

    Google Scholar 

  • Santos, B. V. D., and Chaves, M. C. D. (1999a). (E,E)-N-Isobutyl-2,4-octadienamide from Piper marginatum. Biochemical Systematics and Ecology 27:113–114.

    Google Scholar 

  • Santos, B. V. D., and Chaves, M. C. D. (1999b). 2,4,5-Trimethoxypropiophenone from Piper marginatum. Biochemical Systematics and Ecology 27:539–541.

    Google Scholar 

  • Santos, B. V. D., Da Cunha, E. V. L., Chaves, M. C. D., and Gray, A. I. (1998). Phenylalkanoids from Piper marginatum. Phytochemistry 49:1381–1384.

    CAS  Google Scholar 

  • Schwarz, I., and Braun, M. (1999). Synthesis of naturally occurring dienamides by palladium-catalyzed carbonyl alkenylation. Journal für Praktische Chemie 341(1):72–74.

    CAS  Google Scholar 

  • Scott, I. M., Puniani, E., Durst, T., Phelps, D., Merali, S., Assabgui, R. A., Sánchez-Vindas, P., Poveda, L., Philogène, B. J. R., and Arnason, J. T. (2002). Insecticidal activity of Piper tuberculatum Jacq. extracts: Synergistic interaction of piperamides. Agricultural and Forest Entomology 4:137–144.

    Google Scholar 

  • Seeram, N. P., Lewis, P. A., Jacobs, H., McLean, S., Reynolds, W. F., Tay, L. L., and Yu, M. (1996). 3,4-Epoxy-8,9-dihydropiplartine. A new imide from Piper verrucosum. Journal of Natural Products 59:436–437.

    CAS  Google Scholar 

  • Sengupta, S., Ray, A. B. (1987). The chemistry of Piper species: a review. Fitoterapia 58: 147–166.

    CAS  Google Scholar 

  • Shoji, N., Umeyama, A., Saito, N., Takemoto, T., Kajiwara, A., and Ohizumi, Y. (1986). Dehydropipernonaline, an amide possessing coronary vasodilating activity, isolated from Piper longum L. Journal of Pharmaceutical Sciences 75:1188–1189.

    PubMed  CAS  Google Scholar 

  • Siddiqui, B. S., Gulzar, T., and Begum, S. (2002). Amides from the seeds of Piper nigrum Linn. and their insecticidal activity. Heterocycles 57:1653–1658.

    CAS  Google Scholar 

  • Spino, C., Mayes, N., and Desfossés, H. (1996). Enantioselective synthesis of (+)- and (—)-dihydrokawain. Tetrahedron Letters 37(36):6503–6506.

    CAS  Google Scholar 

  • Spring, F. S., and Stark, J. J. (1950). Piperettine from Piper nigrum: Its isolation, identification, and synthesis. Journal of the Chemical Society 1177–1180.

    Google Scholar 

  • Srivastava, S., Gupta, M. M., Tripathi, A. K., and Kumar, S. (2000a). 1,3-Benzodioxole-5-(2,4,8-triene-methyl nonaoate) and 1,3-benzodioxole-5(2,4,8-triene-isobutyl nonaoate) from Piper mullesua. Indian Journal of Chemistry Section B—Organic Chemistry Including Medicinal Chemistry 39:946–949.

    Google Scholar 

  • Srivastava, S., Verma, R. K., Gupta, M. M., and Kumar, S. (2000b). Chemical constituents of Piper mullesua. Journal of the Indian Chemical Society 77:305–306.

    CAS  Google Scholar 

  • Stohr, J. R., Xiao, P. G., and Bauer, R. (1999). Isobutylamides and a new methylbutylamide from Piper sarmentosum. Planta Medica 65:175–177.

    PubMed  CAS  Google Scholar 

  • Stohr, J. R., Xiao, P. G., and Bauer, R. (2001). Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. Journal of Ethnopharmacology 75:133–139.

    PubMed  CAS  Google Scholar 

  • Strunz, G. M., and Finlay, H. J. (1994). Concise, efficient new synthesis of pipercide, an insecticidal unsaturated amide from Piper nigrum, and related compounds. Tetrahedron 50(38):11113–11122.

    CAS  Google Scholar 

  • Strunz, G. M., and Finlay, H. J. (1996). Expedient synthesis of unsaturated amide alkaloids from Piper spp.: Exploring the scope of recent methodology. Canadian Journal of Chemistry 74:419–432.

    CAS  Google Scholar 

  • Synerholm, M. E., Hartzell, A., and Arthur, J. M. (1945). Derivatives of piperic acid and their toxicities toward houseflies. Contributions from Boyce Thompson Institute 13:433–442.

    CAS  Google Scholar 

  • Terreaux, C., Gupta, M. P., and Hostettmann, K. (1998). Antifungal benzoic acid derivatives from Piper dilatatum. Phytochemistry 49:461–464.

    CAS  Google Scholar 

  • Torquilho, H. S., Pinto, A. C., Godoy, R. L. D., and Guimaraes, E. F. (2000). Essential oil of Piper cernum Vell. var. cernum Yuncker from Rio de Janeiro, Brazil. Journal of Essential Oil Research 12:443–444.

    CAS  Google Scholar 

  • van Genderen, M. H. P., Leclercq, P. A., Delgado, H. S., Kanjilal, P. B., and Singh, R. S. (1999). Compositional analysis of the leaf oils of Piper callosum Ruiz & Pav. from Peru and Michelia montana Blume from India. Spectroscopy-An International Journal 14:51–59.

    Google Scholar 

  • Velpandian, T., Jasuja, R., Bhardwaj, R. K., Jaiswal, J., and Gupta, S. K. (2001). Piperine in food: Interference in the pharmacokinetics of phenytoin. European Journal of Drug Metabolism and Pharmacokinetics 26:241–247.

    PubMed  CAS  Google Scholar 

  • Vila, R., Milo, B., Tomi, F., Casanova, J., Ferro, E. A., and Canigueral, S. (2001). Chemical composition of the essential oil from the leaves of Piper fulvescens, a plant traditionally used in Paraguay. Journal of Ethnopharmacology 76:105–107.

    PubMed  CAS  Google Scholar 

  • Vila, R., Mundina, M., Tomi, F., Ciccio, J. F., Gupta, M. P., Iglesias, J., Casanova, J., and Canigueral, S. (2003). Constituents of the essential oils from Piperfriedrichsthalii C.DC. and P pseudolindenii C.DC. from Central America. Flavour and Fragrance Journal 18:198–201.

    CAS  Google Scholar 

  • Viswanathan, N., Venkatachalam, B., Joshi, B. S., and von Philipsborn, W. (1975). Piperaceae alkaloids: Part III. Synthesis of N-isobutyl-11-(3,4-methylenedioxyphenyl)-undeca-2,4,6-trans, trans, trans, -trienoic amide and N-isobutyl-11-(3,4-methylenedioxyphenyl)-undeca-2,8,10-trans, trans, trans, -trienoic amide (Piperstachine). Helvetica Chimica Acta 58(7):2026–2035.

    CAS  Google Scholar 

  • Wu, D., Nair, M. G., and DeWitt, D. L. (2002a). Novel compounds from Piper methysticum Forst (Kava Kava) roots and their effect on cyclooxygenase enzyme. Journal of Agricultural and Food Chemistry 50:701–705.

    PubMed  CAS  Google Scholar 

  • Wu, D., Yu, L., Nair, M. G., DeWitt, D. L., and Ramsewak, R. S. (2002b). Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (Kava Kava) roots. Phytomedicine 9:41–47.

    PubMed  CAS  Google Scholar 

  • Wu, Q. L., Wang, S. P., Tu, G. Z., Feng, Y. X., and Yang, J. S. (1997). Alkaloids from Piper puberullum. Phytochemistry 44:727–730.

    CAS  Google Scholar 

  • Yang, Y. C., Lee, S. G., Lee, H. K., Kim, M. K., Lee, S. H., and Lee, H. S. (2002). A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. Journal of Agricultural and Food Chemistry 50:3765–3767.

    PubMed  CAS  Google Scholar 

  • Zeng, H. W., Jiang, Y. Y., Cai, D. G., Bian, J., Long, K., and Chen, Z. L. (1997). Piperbetol, methylpiperbetol, piperol A and piperol B: A new series of highly specific PAF receptor antagonists from Piper betle. Planta Medica 63:296–298.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Dyer, L.A., Richards, J., Dodson, C.D. (2004). Isolation, Synthesis, and Evolutionary Ecology of Piper Amides. In: Dyer, L.A., Palmer, A.D.N. (eds) Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30599-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-30599-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1008-3

  • Online ISBN: 978-0-387-30599-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics