Skip to main content

How to Realise a Superior Modem?

Implementation Aspects of an IEEE 802.16 Transceiver

  • Chapter
Broadband Fixed Wireless Access

Part of the book series: Signals and Communication Technology ((SCT))

  • 381 Accesses

6.5 Summary

In this chapter, we have provided a brief review of the implementation challenges in designing cost-efficient BFWA transceivers. The overall architecture was our first point of attention. The top-level architectural choices are normally taken at a very early stage in the design process, and may have a tremendous impact on the quality of the final result. Flexible interfaces between hardware and software and between digital and analog processing were pointed out as crucial features.

Next, the baseband receiver implementation has been discussed. It was demonstrated there is a large similarity between single-carrier modulation with frequency-domain processing and OFDM. Furthermore, several techniques for channel estimation, symbol timing synchronization, and carrier frequency synchronization, for these block-based communication schemes were briefly reviewed.

Finally, we discussed the radio front-ends. Our approach consisted in the adoption of a low-cost direct conversion radio and the compensation of the resulting analog impairments in the digital domain. In this perspective, we discussed techniques for PAPR reduction, I/Q imbalance compensation, phase noise compensation, and radio filter design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.6 References

  1. N. Briscoe, “Understanding the OSI 7-Layer Model”, PC Network Advisor, Issue 120, pp. 13–14, July 2000.

    Google Scholar 

  2. M. Hawa, “Stochastic Evaluation of Fair Scheduling with Applications to Quality-of-Service in Broadband Wireless Access Networks” PhD dissertation, University of Kansas, August 2003.

    Google Scholar 

  3. M. Engels (editor), “Wireless OFDM Systems: How to Make Them Work”, Kluwer Academic Publishers, 2002.

    Google Scholar 

  4. CableLabs, DOCSIS 2.0 Interface Specifications, http://www.cablemodem.com/.

    Google Scholar 

  5. Y.-D. Lin, W.-M. Yin, C.-Y. Huang, “An Investigation into HFC MAC Protocols: Mechanisms, Implementation, and Research Issues”, IEEE Communications Surveys, http://www.comsoc.org/pubs/surveys, Third Quarter 2000, pp. 1–13.

    Google Scholar 

  6. LEON 3 processor, http://www.gaisler.com/

    Google Scholar 

  7. S. Mehta, D. Weber, M. Terrovitis, K. Onodera, M. Mack, B. Kaczynski, H. Samavati, S. Jen, W. Si, M. Lee, K. Singh, S. Mendis, P. Husted, N. Zhang, B. McFarland, D. Su, T. Meng, B. Wooley, “An 802.11g WLAN SoC”, IEEE ISSCC Digest of Technical Papers, Vol. 1, pp. 94–586, February 2005.

    Google Scholar 

  8. H. Darabi, S. Khorram, Z. Zhou, T. Li, B. Marholev, J. Chiu, J. Castaneda, E. Chien, S. Anand, S. Wu, M. Pan, H. Kim, P. Littieri, B. Ibrahim, J. Rael, L. Tran, E. Geronaga, J. Trachewsky, A. Rofougaran, “A Fully Integrated SoC for 802.11b in 0.18 µm CMOS”, IEEE ISSCC Digest of Technical Papers, Vol. l, pp. 96–586, February 2005.

    Google Scholar 

  9. M. Venkatachalam, “Integrated Data and Control Plane Processing Using Intel® IXP23XX Network Processors”, Technology@Intel Magazine, http://developer.intel.com/technology/magazine/index.htm, February 2005.

    Google Scholar 

  10. W. Eberle, et al., “A Digital 72Mb/s 64-QAM OFDM Transceiver for 5GHz Wireless LAN in 0.18um CMOS”, IEEE ISSCC Digest of Technical Papers, pp. 336–337, February 2001.

    Google Scholar 

  11. P. Ryan, et al., “A Single Chip PHY COFDM Modem for IEEE 802.11a with Integrated ADCs and DACs”, IEEE ISSCC Digest of Technical Papers, pp. 338–339, February 2001.

    Google Scholar 

  12. H. Sari, G. Karam, I. Jeanclaude, “Transmission Techniques for Digital Terrestrial TV Broadcasting”, IEEE Communications Magazine, Vol. 33, No. 2, pp. 100–109, February 1995.

    Article  Google Scholar 

  13. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, B. Eidson, “Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems”, IEEE Communications Magazine, Vol. 40, No. 4, pp. 58–66, April 2002.

    Article  Google Scholar 

  14. L. Deneire, B. Gyselinckx, M. Engels, “Training Sequence versus Cyclic Prefix-A New Look on Single-Carrier Communication”, IEEE Communication Letters, Vol. 5, No. 7, pp. 292–294, July 2001.

    Article  Google Scholar 

  15. V. Aue, G. P. Fettweis, R. Valenzuela, “A Comparison of the Performance of Linearly Equalized Single-Carrier and Coded OFDM over Frequency Selective Fading Channels Using the Random Coding Technique, IEEE Proc. of ICC, Vol. 2, pp. 753–757, June 1998.

    Google Scholar 

  16. N. Benvenuto, S. Tomasin, “On the Comparison Between OFDM and Single-Carrier Modulation With a DFE Using a Frequency-Domain”, IEEE Transactions on Communications, Vol. 50, No. 6, pp. 947–955, Jun 2002.

    Article  Google Scholar 

  17. J. Tubbax, B. Côme, L. Van der Perre, L. Deneire, M. Engels, “OFDM versus Single-Carrier with Cyclic Prefix: a System-Based Comparison for Binary Modulation”, IEEE Proc. of WPMC, pp. 537–540, September 2001.

    Google Scholar 

  18. Z. Wang, X. Ma, and G. B. Giannakis, “OFDM or Single-Carrier Block Transmissions?”, IEEE Transactions on Communications, Vol. 52, No. 3, pp. 380–394, March 2004.

    Article  Google Scholar 

  19. Y. Li, “Pilot-Symbol-Aided Channel Estimation for OFDM in Wireless Systems”, IEEE Proc. of VTC, Vol. 2, pp. 1131–1135, May 1999.

    Google Scholar 

  20. M. Morelli, U. Mengali, “A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems”, IEEE Transactions on Signal Processing, Vol. 49, No. 12, pp. 3065–3073, December 2001.

    Article  Google Scholar 

  21. S. Coleri, M. Ergen, A. Puri,. A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems”, IEEE Transactions on Broadcasting, Vol. 48, No. 3, pp. 223–229, September 2002.

    Article  Google Scholar 

  22. K. Abed-Meraim, W. Qiu, and Y. Hua, “Blind System Identification”, Proc. of the IEEE, Vol. 85, No. 8, pp. 1310–1322, Aug. 1997.

    Article  Google Scholar 

  23. A. Scaglione, G. B. Giannakis, S. Barbarossa, “Redundant Filterbank Precoders and Equalizers Part II: Blind Channel Estimation, Synchronization, and Direct Estimation”, IEEE Transactions on Signal Processing, Vol. 47, No. 7, pp. 2007–2022, July 1999.

    Article  Google Scholar 

  24. B. Muquet, M. de Courville, P. Duhamel, V. Buenac, “A Subspace Based Blind and Semi-Blind Channel Identification Method for OFDM Systems”, IEEE Proc. of SPAWC, pp. 170–173, May 1999.

    Google Scholar 

  25. R. W. Heath, G. B. Giannakis, “Exploiting Input Cyclostationarity for Blind Channel Identification in OFDM Systems”, IEEE Transactions on Signal Processing, Vol. 47, No, 3, pp. 848–856, March 1999.

    Article  Google Scholar 

  26. O. Edfors, M. Sandell, J.J. van de Beek, S. K. Wilson, P. O. Borjesson, “OFDM Channel Estimation by Singular Value Decomposition”, IEEE Transactions on Communications, Vol. 46, No. 7, pp. 931–939, July 1998.

    Article  Google Scholar 

  27. L. Deneire, P. Vandenameele, L. Van der Perre, B. Gyselinckx, M. Engels, “A Low Complexity ML Channel Estimator for OFDM”, IEEE Proc. of ICC, Vol. 5, pp. 1461–1465, June 2001.

    Google Scholar 

  28. P. Hoher, “TCM on Frequency-Selective Land-Mobile Fading Channels”, in Proc. of Tirrenia Int. Workshop on Digital Communications, pp. 317–328, September 1991.

    Google Scholar 

  29. B. Yang, K. B. Letaief, R. S. Cheng, Z. Cao, “Channel Estimation for OFDM Transmission in Multipath Fading Channels Based on Parametric Channel Modeling”, IEEE Transactions on Communications, Vol. 49, No. 3, pp. 467–479, March 2001.

    Article  MATH  Google Scholar 

  30. W. D. Warner, C. Leung, “OFDM/FM Frame Synchronization for Mobile Radio Data Communication”, IEEE Transactions on Vehicular Technology, Vol. 42, No. 3, pp. 302–313, August 1993.

    Article  Google Scholar 

  31. T. Keller, L. Piazzo, P. Mandarini, L. Hanzo, “Orthogonal Frequency Division Multiplex Synchronization Techniques for Frequency-Selective Fading Channels”, IEEE Journal on Selected Areas in Communications, Vol. 19, No. 6, pp. 999–1008, June 2001.

    Article  Google Scholar 

  32. T. Schmidl, D. Cox, “Robust Frequency and Timing Synchronization for OFDM”, IEEE Transactions on Communications, Vol. 45, No. 12, pp. 1613–1621, December 1997.

    Article  Google Scholar 

  33. J.-J. van de Beek, M. Sandell, P. O. Börjesson, “ML estimation of time and frequency offset in OFDM systems”, IEEE Transactions on Signal Processing, Vol. 45, No. 7, pp. 1800–1805, July 1997.

    Article  MATH  Google Scholar 

  34. P. H. Moose, “A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction”, IEEE Transactions on Communications, Vol. 42, No. 10, pp.2908–2914, October 1994.

    Article  Google Scholar 

  35. D.J.G. Mestdagh, P.M.P. Spruyt, et. al., “Effect of Amplitude Clipping in DMT-ADSL Transceivers”, Electronic Letters, Vol. 29, No 15, pp. 1354–1355, July 1993.

    Google Scholar 

  36. C. Schurgers, M. B. Srivastava, “A Systematic Approach to Peak-to-Average-Power Ratio in OFDM”, SPIE’s 47th Annual Meeting, pp. 454–464, August 2001.

    Google Scholar 

  37. B. Bisla, R. Eline, L. M. Franca-Neto, “RF System and Circuit Challenges for WiMAX”, Intel Technology Journal, Vol. 8, No. 3, pp. 189–200, August 2004.

    Google Scholar 

  38. J. Tubbax, B. Come, L. Van der Perre, L. Deneire, S. Donnay, M. Engels, “OFDM versus Single Carrier with Cyclic Prefix: a System-Based Comparison”, IEEE Proc. of VTC-Fall, Vol. 2, pp. 1115–19, October 2001.

    Google Scholar 

  39. A. Tarighat, R. Bagheri, A. H. Sayed, “Compensation Schemes and Performance Analysis of I/Q Imbalances in OFDM Receivers”, IEEE Transactions on Signal Processing, Vol. 53, No. 8, Part 2, pp. 3257–3268, August 2005.

    Article  MathSciNet  Google Scholar 

  40. M. Windisch, G. Fettweis, “Standard-Independent I/Q Imbalance Compensation in OFDM Direct-Conversion Receivers”, 9th International OFDM Workshop, pp. 57–61, September 2004.

    Google Scholar 

  41. J. Tubbax, B. Côme, L. Van der Perre, L. Deneire, S. Donnay, M. Engels, “I/Q Imbalance Compensation for OFDM”, IEEE Proceedings of ICC, Vol. 5, pp. 3403–3407, May 2003.

    Google Scholar 

  42. B. Debaillie, B. Côme, W. Eberle, S. Donnay, M. Engels, I. Bolsens, “Impact of Front-End Filters on Bit Error Rate Performances in WLAN-OFDM Transceivers”, IEEE Proc. of RAWCON, pp. 193–196, August 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Engels, M. (2006). How to Realise a Superior Modem?. In: Broadband Fixed Wireless Access. Signals and Communication Technology. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-34593-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34593-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33956-6

  • Online ISBN: 978-0-387-34593-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics