Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

The heat shock protein response appears to be triggered primarily by nonnative proteins accumulating in a stressed cell and results in increased expression of heat shock proteins (HSPs). Many heat shock proteins prevent protein aggregation and participate in refolding or elimination of misfolded proteins in their capacity as chaperones. Even though several mechanisms exist to regulate the abundance of cytosolic and nuclear chaperones, activation of heat shock transcription factor 1 (HSF1) is an essential aspect of the heat shock protein response. HSPs and co-chaperones that are assembled into multichaperone complexes regulate HSF1 activity at different levels. HSP90-containing multichaperone complexes appear to be the most relevant repressors of HSF1 activity. Because HSP90-containing multichaperone complexes interact not only specifically with client proteins including HSF1 but also generically with nonnative proteins, the concentration of nonnative proteins influences assembly on HSF1 of HSP90-containing complexes that repress activation, and may play a role in inactivation, of the transcription factor. Proteins that are unable to achieve stable tertiary structures and remain chaperone substrates are targeted for proteasomal degradation through polyubiquitination by co-chaperone CHIP. CHIP can activate HSF1 to regulate the protein quality control system that balances protection and degradation of chaperone substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu C. Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol 1995; 11:441–469.

    Article  PubMed  CAS  Google Scholar 

  2. Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15(7):1118–1131.

    Article  PubMed  CAS  Google Scholar 

  3. Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993; 13(3):1392–1407.

    PubMed  CAS  Google Scholar 

  4. Baler R, Dahl G, Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993; 13(4):2486–2496.

    PubMed  CAS  Google Scholar 

  5. McMillan DR, Xiao X, Shao L et al. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 1998; 273(13):7523–7528.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Huang L, Zhang J et al. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 2002; 86(2):376–393.

    Article  PubMed  CAS  Google Scholar 

  7. He H, Soncin F, Grammatikakis N et al. Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 2003; 278(37):35465–35475.

    Article  PubMed  CAS  Google Scholar 

  8. Tanabe M, Kawazoe Y, Takeda S et al. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 1998; 17(6):1750–1758.

    Article  PubMed  CAS  Google Scholar 

  9. Inouye S, Katsuki K, Izu H et al. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 2003; 23(16):5882–5895.

    Article  PubMed  CAS  Google Scholar 

  10. Lohmann C, Eggers-Schumacher G, Wunderlich M et al. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 2004; 271(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  11. Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 1988; 54(6):841–853.

    Article  PubMed  CAS  Google Scholar 

  12. Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 1988; 54(6):855–864.

    Article  PubMed  CAS  Google Scholar 

  13. Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2003; 2(2):131–139.

    Article  PubMed  CAS  Google Scholar 

  14. Gallo GJ, Prentice H, Kingston RE. Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1993; 13(2):749–761.

    PubMed  CAS  Google Scholar 

  15. Jedlicka P, Mortin MA, Wu C. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 1997; 16(9):2452–2462.

    Article  PubMed  CAS  Google Scholar 

  16. Clos J, Westwood JT, Becker PB et al. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 1990; 63(5):1085–1097.

    Article  PubMed  CAS  Google Scholar 

  17. Vuister GW, Kim SJ, Orosz A et al. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1994; 1(9):605–614.

    Article  PubMed  CAS  Google Scholar 

  18. Schultheiss J, Kunert O, Gase U et al. Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur J Biochem 1996; 236(3):911–921.

    Article  PubMed  CAS  Google Scholar 

  19. Damberger FF, Pelton JG, Harrison CJ et al. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 1994; 3(10):1806–1821.

    Article  PubMed  CAS  Google Scholar 

  20. Amin J, Ananthan J, Voellmy R. Key features of heat shock regulatory elements. Mol Cell Biol 1988; 8(9):3761–3769.

    PubMed  CAS  Google Scholar 

  21. Xiao H, Lis JT. Germline transformation used to define key features of heat-shock response elements. Science 1988; 239(4844):1139–1142.

    Article  PubMed  CAS  Google Scholar 

  22. Peteranderl R, Rabenstein M, Shin YK et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 1999; 38(12):3559–3569.

    Article  PubMed  CAS  Google Scholar 

  23. Sorger PK, Nelson HC. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 1989; 59(5):807–813.

    Article  PubMed  CAS  Google Scholar 

  24. Green M, Schuetz TJ, Sullivan EK et al. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 1995; 15(6):3354–3362.

    PubMed  CAS  Google Scholar 

  25. Shi Y, Kroeger PE, Morimoto RI. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol 1995; 15(8):4309–4318.

    PubMed  CAS  Google Scholar 

  26. Zuo J, Rungger D, Voellmy R. Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 1995; 15(8):4319–4330.

    PubMed  CAS  Google Scholar 

  27. Wisniewski J, Orosz A, Allada R et al. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Nucleic Acids Res 1996; 24(2):367–374.

    Article  PubMed  CAS  Google Scholar 

  28. Rabindran SK, Giorgi G, Clos J et al. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 1991; 88(16):6906–6910.

    Article  PubMed  CAS  Google Scholar 

  29. Zimarino V, Wu C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 1987; 327(6124):727–730.

    Article  PubMed  CAS  Google Scholar 

  30. Wu C, Wilson S, Walker B et al. Purification and properties of Drosophila heat shock activator protein. Science 1987; 238(4831):1247–1253.

    Article  PubMed  CAS  Google Scholar 

  31. Kline MP, Morimoto RI. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 1997; 17(4):2107–2115.

    PubMed  CAS  Google Scholar 

  32. Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: Implications for regulation. Dev Biol 1980; 77(2):463–479.

    Article  PubMed  CAS  Google Scholar 

  33. DiDomenico BJ, Bugaisky GE, Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 1982; 31(3 Pt 2):593–603.

    Article  PubMed  CAS  Google Scholar 

  34. Abravaya K, Phillips B, Morimoto RI. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 1991; 5(11):2117–2127.

    Article  PubMed  CAS  Google Scholar 

  35. Kelley PM, Schlesinger MJ. The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 1978; 15(4):1277–1286.

    Article  PubMed  CAS  Google Scholar 

  36. Hightower LE. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 1980; 102(3):407–427.

    Article  PubMed  CAS  Google Scholar 

  37. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232(4749):522–524.

    Article  PubMed  CAS  Google Scholar 

  38. Freeman ML, Borrelli MJ, Syed K et al. Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. J Cell Physiol 1995; 164(2):356–366.

    Article  PubMed  CAS  Google Scholar 

  39. Liu H, Lightfoot R, Stevens JL. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 1996; 271(9):4805–4812.

    Article  PubMed  CAS  Google Scholar 

  40. McDuffee AT, Senisterra G, Huntley S et al. Proteins containing nonnative disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 1997; 171(2):143–151.

    Article  PubMed  CAS  Google Scholar 

  41. Zou J, Salminen WF, Roberts SM et al. Correlation between glutathione oxidation and trimerization of heat shock factor 1, an early step in stress induction of the Hsp response. Cell Stress Chaper-ones 1998; 3(2):130–141.

    Article  CAS  Google Scholar 

  42. Westwood JT, Clos J, Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 1991; 353(6347):822–827.

    Article  PubMed  CAS  Google Scholar 

  43. Zuo J, Baler R, Dahl G et al. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 1994; 14(11):7557–7568.

    PubMed  CAS  Google Scholar 

  44. Westwood JT, Wu C. Activation of Drosophila heat shock factor: Conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 1993; 13(6):3481–3486.

    PubMed  CAS  Google Scholar 

  45. Goodson ML, Sarge KD. Heat-inducible DNA binding of purified heat shock transcription factor 1. J Biol Chem 1995; 270(6):2447–2450.

    Article  PubMed  CAS  Google Scholar 

  46. Larson JS, Schuetz TJ, Kingston RE. In vitro activation of purified human heat shock factor by heat. Biochemistry 1995; 34(6):1902–1911.

    Article  PubMed  CAS  Google Scholar 

  47. Zhong M, Orosz A, Wu C. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 1998; 2(1):101–108.

    Article  PubMed  CAS  Google Scholar 

  48. Clos J, Rabindran S, Wisniewski J et al. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 1993; 364(6434):252–255.

    Article  PubMed  CAS  Google Scholar 

  49. Jurivich DA, Sistonen L, Kroes RA et al. Effect of sodium salicylate on the human heat shock response. Science 1992; 255(5049):1243–1245.

    Article  PubMed  CAS  Google Scholar 

  50. Bruce JL, Price BD, Coleman CN et al. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 1993; 53(1):12–15.

    PubMed  CAS  Google Scholar 

  51. Hensold JO, Hunt CR, Calderwood SK et al. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 1990; 10(4):1600–1608.

    PubMed  CAS  Google Scholar 

  52. Baler R, Zou J, Voellmy R. Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1996; 1(1):33–39.

    Article  PubMed  CAS  Google Scholar 

  53. Rabindran SK, Wisniewski J, Li L et al. Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo. Mol Cell Biol 1994; 14(10):6552–6560.

    PubMed  CAS  Google Scholar 

  54. Velazquez JM, Sonoda S, Bugaisky G et al. Is the major Drosophila heat shock protein present in cells that have not been heat shocked? J Cell Biol 1983; 96(1):286–290.

    Article  PubMed  CAS  Google Scholar 

  55. Milner CM, Campbell RD. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 1990; 32(4):242–251.

    Article  PubMed  CAS  Google Scholar 

  56. Jaattela M, Wissing D, Kokholm K et al. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17(21):6124–6134.

    Article  PubMed  CAS  Google Scholar 

  57. Murakami Y, Uehara Y, Yamamoto C et al. Induction of hsp 72/73 by herbimycin A, an inhibitor of transformation by tyrosine kinase oncogenes. Exp Cell Res 1991; 195(2):338–344.

    Article  PubMed  CAS  Google Scholar 

  58. Hegde RS, Zuo J, Voellmy R et al. Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A. J Cell Physiol 1995; 165(1):186–200.

    Article  PubMed  CAS  Google Scholar 

  59. Conde AG, Lau SS, Dillmann WH et al. Induction of heat shock proteins by tyrosine kinase inhibitors in rat cardiomyocytes and myogenic cells confers protection against simulated ischemia. J Mol Cell Cardiol 1997; 29(7):1927–1938.

    Article  PubMed  CAS  Google Scholar 

  60. Zou J, Guo Y, Guettouche T et al. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998; 94(4):471–480.

    Article  PubMed  CAS  Google Scholar 

  61. Whitesell L, Mimnaugh EG, De Costa B et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91(18):8324–8328.

    Article  PubMed  CAS  Google Scholar 

  62. Grenert JP, Sullivan WP, Fadden P et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272(38):23843–23850.

    Article  PubMed  CAS  Google Scholar 

  63. Prodromou C, Roe SM, O’Brien R et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997; 90(1):65–75.

    Article  PubMed  CAS  Google Scholar 

  64. Nadeau K, Das A, Walsh CT. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 1993; 268(2):1479–1487.

    PubMed  CAS  Google Scholar 

  65. Nair SC, Toran EJ, Rimerman RA et al. A pathway of multi-chaperone interactions common to diverse regulatory proteins: Estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1996; 1(4):237–250.

    Article  PubMed  CAS  Google Scholar 

  66. Ali A, Bharadwaj S, O’Carroll R et al. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 1998; 18(9):4949–4960.

    PubMed  CAS  Google Scholar 

  67. Duina AA, Kalton HM, Gaber RF. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 1998; 273(30):18974–18978.

    Article  PubMed  CAS  Google Scholar 

  68. Zhao C, Hashiguchi A, Kondoh K et al. Exogenous expression of heat shock protein 90kDa retards the cell cycle and impairs the heat shock response. Exp Cell Res 2002; 275(2):200–214.

    Article  PubMed  CAS  Google Scholar 

  69. Guo Y, Guettouche T, Fenna M et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 2001; 276(49):45791–45799.

    Article  PubMed  CAS  Google Scholar 

  70. Knowlton AA, Sun L. Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol 2001; 280(1):H455–H464.

    PubMed  CAS  Google Scholar 

  71. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18(3):306–360.

    Article  PubMed  CAS  Google Scholar 

  72. Bharadwaj S, Ali A, Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 1999; 19(12):8033–8041.

    PubMed  CAS  Google Scholar 

  73. Marchler G, Wu C. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 2001; 20(3):499–509.

    Article  PubMed  CAS  Google Scholar 

  74. Shi Y, Mosser DD, Morimoto RI. Molecular chaperones as HSFl-specific transcriptional repressors. Genes Dev 1998; 12(5):654–666.

    PubMed  CAS  Google Scholar 

  75. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426(6968):895–899.

    Article  PubMed  CAS  Google Scholar 

  76. Ciechanover A, Iwai K. The ubiquitin system: From basic mechanisms to the patient bed. IUBMB Life 2004; 56(4):193–201.

    PubMed  CAS  Google Scholar 

  77. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science 1999; 286(5446):1888–1893.

    Article  PubMed  CAS  Google Scholar 

  78. Ballinger CA, Connell P, Wu Y et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999; 19(6):4535–4545.

    PubMed  CAS  Google Scholar 

  79. Jiang J, Ballinger CA, Wu Y et al. CHIP is a U-box-dependent E3 ubiquitin ligase: Identification of Hsc70 as a Target for Ubiquitylation. J Biol Chem 2001; 276(46):42938–42944.

    Article  PubMed  CAS  Google Scholar 

  80. Murata S, Minami Y, Minami M et al. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2001; 2(12):1133–1138.

    Article  PubMed  CAS  Google Scholar 

  81. Nikolay R, Wiederkehr T, Rist W et al. Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J Biol Chem 2004; 279(4):2673–2678.

    Article  PubMed  CAS  Google Scholar 

  82. Meacham GC, Patterson C, Zhang W et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001; 3(1):100–105.

    Article  PubMed  CAS  Google Scholar 

  83. Cyr DM, Hohfeld J, Patterson C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 2002; 27(7):368–375.

    Article  PubMed  CAS  Google Scholar 

  84. Esser C, Scheffner M, Hohfeld J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 2005; 280(29):27443–27448.

    Article  PubMed  CAS  Google Scholar 

  85. Dai Q, Zhang C, Wu Y et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2003; 22(20):5446–5458.

    Article  PubMed  CAS  Google Scholar 

  86. Kim SA, Yoon JH, Kim DK et al. CHIP interacts with heat shock factor 1 during heat stress. FEBS Lett 2005; 579(29):6559–6563.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang C, Xu Z, He XR et al. CHIP, a co-chaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2005; 288(6):H2836–H2842.

    Article  PubMed  CAS  Google Scholar 

  88. Voellmy R. Transcriptional regulation of the metazoan stress protein response. Prog Nucleic Acid Res Mol Biol 2004; 78:143–185.

    Article  PubMed  CAS  Google Scholar 

  89. Boellmann F, Guettouche T, Guo Y et al. DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci USA 2004; 101(12):4100–4105.

    Article  PubMed  CAS  Google Scholar 

  90. Holmberg CI, Hietakangas V, Mikhailov A et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 2001; 20(14):3800–3810.

    Article  PubMed  CAS  Google Scholar 

  91. Guettouche T, Boellmann F, Lane WS et al. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 2005; 6(1):4.

    Article  PubMed  CAS  Google Scholar 

  92. Wang X, Khaleque MA, Zhao MJ et al. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on Serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 2006; 281(2):782–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Voellmy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Voellmy, R., Boellmann, F. (2007). Chaperone Regulation of the Heat Shock Protein Response. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_9

Download citation

Publish with us

Policies and ethics