Skip to main content

Transcription and Genomic Integrity

  • Chapter
Gene Expression and Regulation

Abstract

The numerous discoveries that have elucidated the basic mechanisms of the assembly of the transcription machinery and the factors that regulate gene expression have been discussed elsewhere in this book. Here we address another layer of complexity intrinsic to the transcription machinery, namely, its role in maintaining genomic integrity. First, the transcription machinery specifically facilitates the repair of damaged template DNA in the transcribed strand of active genes. In addition to damaged DNA, collisions between the transcription and replication machineries represent a source of genomic instability and are thus regulated by the coordination of these two processes. Finally, the transcription machinery plays an active role during the cell’s response to DNA damage by up-regulating certain genes to cope with the damage and down-regulating other genes. We will discuss the detailed mechanisms of these processes to highlight the contribution of the transcription machinery to the maintenance of the genomic integrity of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C., and Elledge, S. J. (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8, 2401–2415.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, D. E., Tomkinson, A. E., Lehmann, A. R., Webster, A. D., and Lindahl, T. (1992). Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Batty, D., Rapic’-Otrin, V., Levine, A. S., and Wood, R. D. (2000). Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 300, 275–290.

    Article  PubMed  CAS  Google Scholar 

  • Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P., and Huibregtse, J. M. (1999). Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 19, 6972–6979.

    PubMed  CAS  Google Scholar 

  • Bennett, C. B., Lewis, L. K., Karthikeyan, G., Lobachev, K. S., Jin, Y. H., Sterling, J. F., Snipe, J. R., and Resnick, M. A. (2001). Genes required for ionizing radiation resistance in yeast. Nat Genet 29, 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, P. K., Verhage, R. A., Brouwer, J., and Friedberg, E. C. (1996). Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J Bacteriol 178, 5977–5988.

    PubMed  CAS  Google Scholar 

  • Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985). DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Boiteux, S., and Guillet, M. (2004). Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 3, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Bregman, D. B., Halaban, R., van Gool, A. J., Henning, K. A., Friedberg, E. C., and Warren, S. L. (1996). UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci USA 93, 11586–11590.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, B. J. (1988). When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, B. J., and Fangman, W. L. (1988). A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, B. J., Lockshon, D., and Fangman, W. L. (1992). The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71, 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P. J., Wise, D. S., Berry, D. A., Kosmoski, J. V., Smerdon, M. J., Somers, R. L., Mackie, H., Spoonde, A. Y., Ackerman, E. J., Coleman, K., et al. (2000). The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275, 22355–22362.

    Article  PubMed  CAS  Google Scholar 

  • Buschta-Hedayat, N., Buterin, T., Hess, M. T., Missura, M., and Naegeli, H. (1999). Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc Natl Acad Sci USA 96, 6090–6095.

    Article  PubMed  CAS  Google Scholar 

  • Carreau, M., and Hunting, D. (1992). Transcription-dependent and independent DNA excision repair pathways in human cells. Mutat Res 274, 57–64.

    PubMed  CAS  Google Scholar 

  • Chen, Y. H., and Bogenhagen, D. F. (1993). Effects of DNA lesions on transcription elongation by T7 RNA polymerase. J Biol Chem 268, 5849–5855.

    PubMed  CAS  Google Scholar 

  • Choi, D. J., Marino-Alessandri, D. J., Geacintov, N. E., and Scicchitano, D. A. (1994). Site-specific benzo[a]pyrene diol epoxide-DNA adducts inhibit transcription elongation by bacteriophage T7 RNA polymerase. Biochemistry 33, 780–787.

    Article  PubMed  CAS  Google Scholar 

  • Christians, F. C., and Hanawalt, P. C. (1992). Inhibition of transcription and strand-specific DNA repair by alpha-amanitin in Chinese hamster ovary cells. Mutat Res 274, 93–101.

    PubMed  CAS  Google Scholar 

  • Christians, F. C., and Hanawalt, P. C. (1993). Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32, 10512–10518.

    Article  PubMed  CAS  Google Scholar 

  • Christians, F. C., and Hanawalt, P. C. (1994). Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne’s syndrome cells. Mutat Res 323, 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Citterio, E., Van Den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R. E., Hoeijmakers, J. H., and Vermeulen, W. (2000). ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol 20, 7643–7653.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D. J., and Gimenez-Abian, J. F. (2000). Checkpoints controlling mitosis. Bioessays 22, 351–363.

    Article  PubMed  CAS  Google Scholar 

  • Cline, S. D., Riggins, J. N., Tornaletti, S., Marnett, L. J., and Hanawalt, P. C. (2004). Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc Natl Acad Sci USA 101, 7275–7280.

    Article  PubMed  CAS  Google Scholar 

  • Conconi, A., Bespalov, V. A., and Smerdon, M. J. (2002). Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci USA 99, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, P. K., Nouspikel, T., Clarkson, S. G., and Leadon, S. A. (1997). Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275, 990–993.

    Article  PubMed  CAS  Google Scholar 

  • Corda, Y., Job, C., Anin, M. F., Leng, M., and Job, D. (1993). Spectrum of DNA-platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. Biochemistry 32, 8582–8588.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. S., and Parry, J. M. (1968). The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat Res 6, 37–55.

    PubMed  CAS  Google Scholar 

  • Cullinane, C., Mazur, S. J., Essigmann, J. M., Phillips, D. R., and Bohr, V. A. (1999). Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. Biochemistry 38, 6204–6212.

    Article  PubMed  CAS  Google Scholar 

  • Dammann, R., and Pfeifer, G. P. (1997). Lack of gene-and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol Cell Biol 17, 219–229.

    PubMed  CAS  Google Scholar 

  • de Boer, J., and Hoeijmakers, J. H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460.

    Article  PubMed  Google Scholar 

  • de Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998). DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 12, 2598–2609.

    PubMed  Google Scholar 

  • de Laat, W. L., Jaspers, N. G., and Hoeijmakers, J. H. (1999). Molecular mechanism of nucleotide excision repair. Genes Dev 13, 768–785.

    PubMed  Google Scholar 

  • Deshpande, A. M., and Newlon, C. S. (1996). DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, B. A., Fuchs, R. P., Reines, D., and Hanawalt, P. C. (1996). Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem 271, 10588–10594.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, B. A., Yin, S., Taylor, J. S., Reines, D., and Hanawalt, P. C. (1994). Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 91, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • Drapkin, R., Reardon, J. T., Ansari, A., Huang, J. C., Zawel, L., Ahn, K., Sancar, A., and Reinberg, D. (1994). Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769–772.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, J. A., Sweder, K. S., and Hanawalt, P. C. (1995). Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23, 2715–2723.

    Article  PubMed  CAS  Google Scholar 

  • Elias-Arnanz, M., and Salas, M. (1997). Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery. Embo J 16, 5775–5783.

    Article  PubMed  CAS  Google Scholar 

  • Elias-Arnanz, M., and Salas, M. (1999). Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. Embo J 18, 5675–5682.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997). Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J 16, 6559–6573.

    Article  PubMed  CAS  Google Scholar 

  • Evers, R., and Grummt, I. (1995). Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci USA 92, 5827–5831.

    Article  PubMed  CAS  Google Scholar 

  • Feaver, W. J., Svejstrup, J. Q., Bardwell, L., Bardwell, A. J., Buratowski, S., Gulyas, K. D., Donahue, T. F., Friedberg, E. C., and Kornberg, R. D. (1993). Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • French, S. (1992). Consequences of replication fork movement through transcription units in vivo. Science 258, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  • Frit, P., Bergmann, E., and Egly, J. M. (1999). Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 81, 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, L. K., and Smerdon, M. J. (1995). Repair of UV damage in actively transcribed ribosomal genes. Biochemistry 34, 13117–13124.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, J. K., Gogel, E., Berger, C., Wallisch, M., Muller, F., Grummt, I., and Grummt, F. (1997). Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90, 559–567.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., Powell, W., Mote, J., Jr., and Reines, D. (1993). Nascent RNA cleavage by arrested RNA polymerase II does not require upstream translocation of the elongation complex on DNA. J Biol Chem 268, 25604–25616.

    PubMed  CAS  Google Scholar 

  • Hanawalt, P., and Mellon, I. (1993). Stranded in an active gene. Curr Biol 3, 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt, P. C. (1994). Transcription-coupled repair and human disease. Science 266, 1957–1958.

    Article  PubMed  CAS  Google Scholar 

  • Hara, R., Selby, C. P., Liu, M., Price, D. H., and Sancar, A. (1999). Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J Biol Chem 274, 24779–24786.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Hatahet, Z., Purmal, A. A., and Wallace, S. S. (1994). Oxidative DNA lesions as blocks to in vitro transcription by phage T7 RNA polymerase. Ann N Y Acad Sci 726, 346–348.

    Article  PubMed  CAS  Google Scholar 

  • Henning, K. A., Li, L., Iyer, N., McDaniel, L. D., Reagan, M. S., Legerski, R., Schultz, R. A., Stefanini, M., Lehmann, A. R., Mayne, L. V., and Friedberg, E. C. (1995). The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, K., and Bucher, P. (1995). The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci 20, 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Zhou, Z., and Elledge, S. J. (1998). The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Ivessa, A. S., Lenzmeier, B. A., Bessler, J. B., Goudsouzian, L. K., Schnakenberg, S. L., and Zakian, V. A. (2003). The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12, 1525–1536.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, N., Reagan, M. S., Wu, K. J., Canagarajah, B., and Friedberg, E. C. (1996). Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35, 2157–2167.

    Article  PubMed  CAS  Google Scholar 

  • Izban, M. G., and Luse, D. S. (1992). The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′—5′ direction in the presence of elongation factor SII. Genes Dev 6, 1342–1356.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, P., Rupes, I., Sharom, J. R., Schneper, L., Broach, J. R., and Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18, 2491–2505.

    Article  PubMed  CAS  Google Scholar 

  • Kalogeraki, V. S., Tornaletti, S., and Hanawalt, P. C. (2003). Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 278, 19558–19564.

    Article  PubMed  CAS  Google Scholar 

  • Kato, R., and Ogawa, H. (1994). An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 22, 3104–3112.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C., Snyder, R. O., and Wold, M. S. (1992). Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12, 3050–3059.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T. (2003). The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol Cell Biol 23, 9178–9188.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Heck, D. J., Nomura, M., and Horiuchi, T. (1998). Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae. requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12, 3821–3830.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Hidaka, M., Nishizawa, M., and Horiuchi, T. (1992). Identification of a site required for DNA replication fork blocking activity in the rRNA gene cluster in Saccharomyces cerevisiae. Mol Gen Genet 233, 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Krokan, H. E., Standal, R., and Slupphaug, G. (1997). DNA glycosylases in the base excision repair of DNA. Biochem J 325 (Pt 1), 1–16.

    PubMed  CAS  Google Scholar 

  • Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996). Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. Embo J 15, 6662–6670.

    PubMed  CAS  Google Scholar 

  • Le Page, F., Kwoh, E. E., Avrutskaya, A., Gentil, A., Leadon, S. A., Sarasin, A., and Cooper, P. K. (2000). Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171.

    Article  PubMed  Google Scholar 

  • Leadon, S. A., Barbee, S. L., and Dunn, A. B. (1995). The yeast RAD2, but not RAD1, gene is involved in the transcription-coupled repair of thymine glycols. Mutat Res 337, 169–178.

    PubMed  CAS  Google Scholar 

  • Leadon, S. A., and Cooper, P. K. (1993). Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc Natl Acad Sci USA 90, 10499–10503.

    Article  PubMed  CAS  Google Scholar 

  • Leadon, S. A., and Lawrence, D. A. (1992). Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem 267, 23175–23182.

    PubMed  CAS  Google Scholar 

  • Lee, K. B., Wang, D., Lippard, S. J., and Sharp, P. A. (2002). Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA 99, 4239–4244.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., and Reese, J. C. (2000). Derepression of DNA damage-regulated genes requires yeast TAF(II)s. Embo J 19, 4091–4100.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., and Reese, J. C. (2001). Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 276, 33788–33797.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T., Karran, P., and Wood, R. D. (1997). DNA excision repair pathways. Curr Opin Genet Dev 7, 158–169.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., and Alberts, B. M. (1995). Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Wong, M. L., Tinker, R. L., Geiduschek, E. P., and Alberts, B. M. (1993). The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Xie, Z., and Price, D. H. (1998). A human RNA polymerase II transcription termination factor is a SWI2/SNF2 family member. J Biol Chem 273, 25541–25544.

    Article  PubMed  CAS  Google Scholar 

  • Ljungman, M., and Zhang, F. (1996). Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13, 823–831.

    PubMed  CAS  Google Scholar 

  • Lopez-estrano, C., Schvartzman, J. B., Krimer, D. B., and Hernandez, P. (1998). Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA. J Mol Biol 277, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Lowndes, N. F., and Murguia, J. R. (2000). Sensing and responding to DNA damage. Curr Opin Genet Dev 10, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Z., Zheng, J., Lu, Y., and Bregman, D. B. (2001). Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat Res 486, 259–274.

    PubMed  CAS  Google Scholar 

  • Ma, L., Siemssen, E. D., Noteborn, H. M., and van der Eb, A. J. (1994). The xeroderma pigmentosum group B protein ERCC3 produced in the baculovirus system exhibits DNA helicase activity. Nucleic Acids Res 22, 4095–4102.

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine, D. M., Rodriguez, H. K., and Bell, S. P. (2004). Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18, 3094–3105.

    Article  PubMed  CAS  Google Scholar 

  • Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., and O’Shea, E. K. (2004). Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA 101, 14315–14322.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N. F., Peng, J., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation potential by a novel carboxylterminal domain kinase. J Biol Chem 271, 27176–27183.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D. E., Soulard, A., and Hall, M. N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969–979.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, Y., and Kim, K. (1995). Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269, 699–702.

    Article  PubMed  CAS  Google Scholar 

  • McKay, B. C., Ljungman, M., and Rainbow, A. J. (1998). Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis. Oncogene 17, 545–555.

    Article  PubMed  CAS  Google Scholar 

  • Mei Kwei, J. S., Kuraoka, I., Horibata, K., Ubukata, M., Kobatake, E., Iwai, S., Handa, H., and Tanaka, K. (2004). Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem Biophys Res Commun 320, 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Mello, J. A., Lippard, S. J., and Essigmann, J. M. (1995). DNA adducts of cis-diamminedichloroplatinum(II) and its trans isomer inhibit RNA polymerase II differentially in vivo. Biochemistry 34, 14783–14791.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, I., Bohr, V. A., Smith, C. A., and Hanawalt, P. C. (1986). Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci USA 83, 8878–8882.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, I., and Champe, G. N. (1996). Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 93, 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, I., and Hanawalt, P. C. (1989). Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342, 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, I., Rajpal, D. K., Koi, M., Boland, C. R., and Champe, G. N. (1996). Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • Mellon, I., Spivak, G., and Hanawalt, P. C. (1987). Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Memisoglu, A., and Samson, L. (2000). Base excision repair in yeast and mammals. Mutat Res 451, 39–51.

    PubMed  CAS  Google Scholar 

  • Mirkin, E. V., and Mirkin, S. M. (2005). Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25, 888–895.

    Article  PubMed  CAS  Google Scholar 

  • Mu, D., and Sancar, A. (1997). Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J Biol Chem 272, 7570–7573.

    Article  PubMed  CAS  Google Scholar 

  • Mulugu, S., Potnis, A., Shamsuzzaman, Taylor, J., Alexander, K., and Bastia, D. (2001). Mechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction. Proc Natl Acad Sci USA 98, 9569–9574.

    Article  PubMed  CAS  Google Scholar 

  • Nath, S. T., and Romano, L. J. (1991). Transcription by T7 RNA polymerase using benzo[a]pyrene-modified templates. Carcinogenesis 12, 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Navas, T. A., Sanchez, Y., and Elledge, S. J. (1996). RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10, 2632–2643.

    Article  PubMed  CAS  Google Scholar 

  • Navas, T. A., Zhou, Z., and Elledge, S. J. (1995). DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, V. T., Giannoni, F., Dubois, M. F., Seo, S. J., Vigneron, M., Kedinger, C., and Bensaude, O. (1996). In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res 24, 2924–2929.

    Article  PubMed  CAS  Google Scholar 

  • Nicholl, I. D., Nealon, K., and Kenny, M. K. (1997). Reconstitution of human base excision repair with purified proteins. Biochemistry 36, 7557–7566.

    Article  PubMed  CAS  Google Scholar 

  • Nudler, E., Goldfarb, A., and Kashlev, M. (1994). Discontinuous mechanism of transcription elongation. Science 265, 793–796.

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994). XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435.

    Article  PubMed  CAS  Google Scholar 

  • Olavarrieta, L., Hernandez, P., Krimer, D. B., and Schvartzman, J. B. (2002). DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 322, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. S., Marr, M. T., and Roberts, J. W. (2002). E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Perlow, R. A., Kolbanovskii, A., Hingerty, B. E., Geacintov, N. E., Broyde, S., and Scicchitano, D. A. (2002). DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence-and stereochemistry-dependent manner. J Mol Biol 321, 29–47.

    Article  PubMed  CAS  Google Scholar 

  • Plosky, B., Samson, L., Engelward, B. P., Gold, B., Schlaen, B., Millas, T., Magnotti, M., Schor, J., and Scicchitano, D. A. (2002). Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes. DNA Repair (Amst) 1, 683–696.

    Article  PubMed  CAS  Google Scholar 

  • Prado, F., and Aguilera, A. (2005). Impairment of replication fork progression mediates RNA polII transcription-associated recombination. Embo J 24, 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  • Putter, V., and Grummt, F. (2002). Transcription termination factor TTF-I exhibits contrahelicase activity during DNA replication. EMBO Rep 3, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L., and Bregman, D. B. (1998). Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J Biol Chem 273, 5184–5189.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, E. P., and Danchin, A. (2003). Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 34, 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Roth, R. B., Amin, S., Geacintov, N. E., and Scicchitano, D. A. (2001). Bacteriophage T7 RNA polymerase transcription elongation is inhibited by site-specific, stereospecific benzo[c]phenanthrene diol epoxide DNA lesions. Biochemistry 40, 5200–5207.

    Article  PubMed  CAS  Google Scholar 

  • Samkurashvili, I., and Luse, D. S. (1996). Translocation and transcriptional arrest during transcript elongation by RNA polymerase II. J Biol Chem 271, 23495–23505.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer, L., Moncollin, V., Roy, R., Staub, A., Mezzina, M., Sarasin, A., Weeda, G., Hoeijmakers, J. H., and Egly, J. M. (1994). The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. Embo J 13, 2388–2392.

    PubMed  CAS  Google Scholar 

  • Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H., Chambon, P., and Egly, J. M. (1993). DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Scharer, O. D., and Jiricny, J. (2001). Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270–281.

    Article  PubMed  CAS  Google Scholar 

  • Schawalder, S. B., Kabani, M., Howald, I., Choudhury, U., Werner, M., and Shore, D. (2004). Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432, 1058–1061.

    Article  PubMed  CAS  Google Scholar 

  • Schinecker, T. M., Perlow, R. A., Broyde, S., Geacintov, N. E., and Scicchitano, D. A. (2003). Human RNA polymerase II is partially blocked by DNA adducts derived from tumorigenic benzo[c]phenanthrene diol epoxides: relating biological consequences to conformational preferences. Nucleic Acids Res 31, 6004–6015.

    Article  PubMed  CAS  Google Scholar 

  • Schubeler, D., Scalzo, D., Kooperberg, C., van Steensel, B., Delrow, J., and Groudine, M. (2002). Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32, 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Selby, C. P., and Sancar, A. (1997a). Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci USA 94, 11205–11209.

    Article  PubMed  CAS  Google Scholar 

  • Selby, C. P., and Sancar, A. (1997b). Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J Biol Chem 272, 1885–1890.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, V. M., Li, B., and Reese, J. C. (2003). SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17, 502–515.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y. B., Gamper, H., and Hearst, J. E. (1988). Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J Biol Chem 263, 527–534.

    PubMed  CAS  Google Scholar 

  • Shivji, M. K., Podust, V. N., Hubscher, U., and Wood, R. D. (1995). Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34, 5011–5017.

    Article  PubMed  CAS  Google Scholar 

  • Sijbers, A. M., de Laat, W. L., Ariza, R. R., Biggerstaff, M., Wei, Y. F., Moggs, J. G., Carter, K. C., Shell, B. K., Evans, E., de Jong, M. C., et al. (1996). Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Smerdon, M. J., and Thoma, F. (1990). Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61, 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Baeten, J., and Taylor, J. S. (1998). The ability of a variety of polymerases to synthesize past site-specific cis-syn, trans-syn-II, (6–4), and Dewar photoproducts of thymidylyl-(3′—>5′)-thymidine. J Biol Chem 273, 21933–21940.

    Article  PubMed  CAS  Google Scholar 

  • Spivak, G. (2004). The many faces of Cockayne syndrome. Proc Natl Acad Sci USA 101, 15273–15274.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D. K., Berg, B. J., Prasad, R., Molina, J. T., Beard, W. A., Tomkinson, A. E., and Wilson, S. H. (1998). Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 273, 21203–21209.

    Article  PubMed  CAS  Google Scholar 

  • Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Sung, P., Bailly, V., Weber, C., Thompson, L. H., Prakash, L., and Prakash, S. (1993). Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855.

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup, J. Q. (2002). Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 3, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup, J. Q. (2003). Rescue of arrested RNA polymerase II complexes. J Cell Sci 116, 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Svejstrup, J. Q., Vichi, P., and Egly, J. M. (1996). The multiple roles of transcription/repair factor TFIIH. Trends Biochem Sci 21, 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Sweder, K. S., and Hanawalt, P. C. (1992). Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci USA 89, 10696–10700.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Horiuchi, T., and Kobayashi, T. (2003). Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17, 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  • Tantin, D. (1998). RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 273, 27794–27799.

    Article  PubMed  CAS  Google Scholar 

  • Tijsterman, M., Verhage, R. A., van de Putte, P., Tasseron-de Jong, J. G., and Brouwer, J. (1997). Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94, 8027–8032.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., Donahue, B. A., Reines, D., and Hanawalt, P. C. (1997). Nucleotide sequence context effect of a cyclobutane pyrimidine dimer upon RNA polymerase II transcription. J Biol Chem 272, 31719–31724.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., and Hanawalt, P. C. (1999). Effect of DNA lesions on transcription elongation. Biochimie 81, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., Maeda, L. S., Lloyd, D. R., Reines, D., and Hanawalt, P. C. (2001). Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 276, 45367–45371.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., Patrick, S. M., Turchi, J. J., and Hanawalt, P. C. (2003). Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 278, 35791–35797.

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti, S., Reines, D., and Hanawalt, P. C. (1999). Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem 274, 24124–24130.

    Article  PubMed  CAS  Google Scholar 

  • Troelstra, C., van Gool, A., de Wit, J., Vermeulen, W., Bootsma, D., and Hoeijmakers, J. H. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953.

    Article  PubMed  CAS  Google Scholar 

  • Tu, Y., Bates, S., and Pfeifer, G. P. (1997). Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J Biol Chem 272, 20747–20755.

    Article  PubMed  CAS  Google Scholar 

  • van Gool, A. J., Citterio, E., Rademakers, S., van Os, R., Vermeulen, W., Constantinou, A., Egly, J. M., Bootsma, D., and Hoeijmakers, J. H. (1997). The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. Embo J 16, 5955–5965.

    Article  PubMed  Google Scholar 

  • van Gool, A. J., Verhage, R., Swagemakers, S. M., van de Putte, P., Brouwer, J., Troelstra, C., Bootsma, D., and Hoeijmakers, J. H. (1994). RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. Embo J 13, 5361–5369.

    PubMed  Google Scholar 

  • Van Hoffen, A., Natarajan, A. T., Mayne, L. V., van Zeeland, A. A., Mullenders, L. H., and Venema, J. (1993). Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res 21, 5890–5895.

    Article  PubMed  Google Scholar 

  • Venema, J., Mullenders, L. H., Natarajan, A. T., van Zeeland, A. A., and Mayne, L. V. (1990a). The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA 87, 4707–4711.

    Article  PubMed  CAS  Google Scholar 

  • Venema, J., van Hoffen, A., Natarajan, A. T., van Zeeland, A. A., and Mullenders, L. H. (1990b). The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res 18, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Verhage, R. A., Van de Putte, P., and Brouwer, J. (1996). Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes. Nucleic Acids Res 24, 1020–1025.

    Article  PubMed  CAS  Google Scholar 

  • Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8, 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J. M., and Wauthier, E. L. (1991). Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerases I and II. Mol Cell Biol 11, 2245–2252.

    PubMed  CAS  Google Scholar 

  • Wade, J. T., Hall, D. B., and Struhl, K. (2004). The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432, 1054–1058.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D., Meier, T. I., Chan, C. L., Feng, G., Lee, D. N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81, 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Svejstrup, J. Q., Feaver, W. J., Wu, X., Kornberg, R. D., and Friedberg, E. C. (1994). Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 368, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Weinert, T. A. (1992). Dual cell cycle checkpoints sensitive to chromosome replication and DNA damage in the budding yeast Saccharomyces cerevisiae. Radiat Res 132, 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Weinert, T. A., Kiser, G. L., and Hartwell, L. H. (1994). Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8, 652–665.

    Article  PubMed  CAS  Google Scholar 

  • Wind, M., and Reines, D. (2000). Transcription elongation factor SII. Bioessays 22, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R. D. (1999). DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Woudstra, E. C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J. Q. (2002). A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., and Price, D. H. (1996). Purification of an RNA polymerase II transcript release factor from Drosophila. J Biol Chem 271, 11043–11046.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z., and Norris, D. (1998). The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response. Genetics 150, 1419–1428.

    PubMed  CAS  Google Scholar 

  • You, Z., Feaver, W. J., and Friedberg, E. C. (1998). Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol Cell Biol 18, 2668–2676.

    PubMed  CAS  Google Scholar 

  • Yu, A., Fan, H. Y., Liao, D., Bailey, A. D., and Weiner, A. M. (2000). Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 5, 801–810.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., and Reese, J. C. (2004a). Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279, 39240–39250.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., and Reese, J. C. (2004b). Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. Embo J 23, 2246–2257.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J. (2004). Coordination of DNA synthesis and histone gene expression during normal cell cycle progression and after DNA damage. Cell Cycle 3, 695–697.

    PubMed  CAS  Google Scholar 

  • Zhao, X., Muller, E. G., and Rothstein, R. (1998). A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools [In Process Citation]. Mol Cell 2, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., and Rothstein, R. (2002). The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA 99, 3746–3751.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, P., Fay, D. S., Burton, J., Xiao, H., Pinkham, J. L., and Stern, D. F. (1993). SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol Cell Biol 13, 5829–5842.

    PubMed  CAS  Google Scholar 

  • Zhou, Z., and Elledge, S. J. (1992). Isolation of crt mutants constitutive for transcription of the DNA damage inducible gene RNR3 in Saccharomyces cerevisiae. Genetics 131, 851–866.

    PubMed  CAS  Google Scholar 

  • Zhou, Z., and Elledge, S. J. (1993). DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75, 1119–1127.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Poisson, J.M., Chen, Y., Sanchez, Y. (2006). Transcription and Genomic Integrity. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_25

Download citation

Publish with us

Policies and ethics