Skip to main content

Progress in Attosecond Metrology

  • Chapter
Ultrafast Optics V

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 132))

  • 1621 Accesses

Abstract

Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 as = 10−18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 fs = 1000 as). Atoms exposed to a few oscillation cycles of intense laser light are able to emit a single XUV burst lasting less than 1 fs. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated 250-as XUV pulses, constituting the shortest reproducible events and fastest measurement to date. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond “oscilloscope” and observing the motion of electrons in and around atoms in real time. Recent experiments hold promise for the development of an attosecond hard X-ray source, which may pave the way toward 4D electron imaging with subatomic resolution in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Zewail: Femtochemistry: atomic-scale dynamics of the chemical bond (adapted from the Nobel Lecture). J. Phys. Chem. A104, 5660–5694 (2000).

    Google Scholar 

  2. A. Baltuska, T. Udem, M. Uiberacker, et al.: Attosecond control of electronic processes by intense light fields. Nature 421(6923), 611–615 (2003).

    Article  ADS  Google Scholar 

  3. T. Brabec and F. Krausz: Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  4. U. Keller: Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  5. M. Drescher, M. Hentschel, R. Kienberger, et al.: X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001). Published online February 15, 2001; 10.1126/science.l058561.

    Article  ADS  Google Scholar 

  6. P. M. Paul, E. S. Toma, P. Breger et al.: Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  7. Y. Mairesse, A. de Bohan, L. J. Frasinski, et al.: Attosecond Synchronisation of High-Harmonic Soft X-Rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  8. P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris: Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  9. M. Hentschel, R. Kienberger, Ch. Spielmann et al.: Attosecond metrology, Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  10. C. Wheatstonel Phil. Mag. 6, 61 (1835).

    Google Scholar 

  11. D. J. Bradley, B. Liddy, and W. E. Sleat: Opt. Commun. 2, 391 (1971).

    Article  ADS  Google Scholar 

  12. M. Schelev, Ya, M. C. Richardson, and A. J. Alcock: Image-converter streak camera with picosecond resolution. Appl. Phys. Lett. 18, 354 (1971).

    Article  ADS  Google Scholar 

  13. R. Kienberger, E. Goulielmakis, M. Uiberacker et al.: Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  14. J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum: Attosecond streak camera, Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  15. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and Th. Brabec: quantum theory of attosecond XUV pulse measurement by laser dressed photoionization, Phys. Rev. Lett. 88, 173904 (2002).

    Article  ADS  Google Scholar 

  16. D. J. Kane and R. Trebino: Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–579 (1993).

    Article  ADS  Google Scholar 

  17. T. Sekikawa, T. Katsura, S. Miura, and S. Watanabe: Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002).

    Article  ADS  Google Scholar 

  18. Vampouille et al.: J. Opt. (Paris) 15, 385 (1984).

    ADS  Google Scholar 

  19. M. Kaufman et al.: Appl. Phys. Lett. 64, 270 (1994).

    Article  ADS  Google Scholar 

  20. M. Beck, M. G. Raymer, I. A. Walmsley, and Wong: Opt. Lett. 18, 2041–2043 (1993).

    Article  ADS  Google Scholar 

  21. I._A. Walmsley and V. Wong: J. Opt. Soc. Am B. 13, 2453 (1996).

    Article  ADS  Google Scholar 

  22. C. Dorrer and I. Kang: Opt. Lett. 28, 1481 (2003).

    Article  ADS  Google Scholar 

  23. M. Drescher, M. Hentschel, R. Kienberger, et al.: Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  24. A. L’Huillier and P. Balcou: High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    Article  ADS  Google Scholar 

  25. J._J. Macklin, J. D. Kmetec, and C. L. Gordon, III: High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    Article  ADS  Google Scholar 

  26. K._J. Schafer, J. L. Krause, and K. C. Kulander: Int. J. Nonlinear Opt. Phys. 1, 245 (1992).

    Article  Google Scholar 

  27. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander: Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  28. P.B. Corkum: Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  29. M. Lewenstein, Ph. Balcou, M. Ivanov, Yu, A. L’Huillier, and P. B. Corkum: Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  30. P. Salieres, B. Carre, L. Le Deroff, et al: Feynman’s path integral in the light of intense-laser-atom experiments. Science 292, 902–904 (2001).

    Article  ADS  Google Scholar 

  31. I. P. Christov, M. M. Murnane, and H. C. Kapteyn: High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  32. C. Kan, N. H. Burnett, C. E. Capjack, and R. Rankin: Coherent XUV generation from gases ionized by several cycle optical pulses. Phys. Rev. Lett. 79, 2971–2974 (1997).

    Article  ADS  Google Scholar 

  33. A. de Bohan, P. Antoine, D. B. Milosevic, and B. Piraux: Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 81, 1837–1840 (1998).

    Article  ADS  Google Scholar 

  34. G. Tempea, M. Geissler, and T. Brabec: Phase sensitivity of high-order harmonic generation with few-cycle laser pulses. J. Opt. Soc. Am. B. 16, 669–674 (1999).

    Article  ADS  Google Scholar 

  35. E. Goulielmakis, M. Uiberacker, and R. Kienberger, et al.: Direct measurement of light waves. Science, 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  36. J. Seres, E. Seres, A. J. Verhoef, et al.: Nature 433, 596 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kienberger, R., Krausz, F. (2007). Progress in Attosecond Metrology. In: Watanabe, S., Midorikawa, K. (eds) Ultrafast Optics V. Springer Series in Optical Sciences, vol 132. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49119-6_1

Download citation

Publish with us

Policies and ethics