Skip to main content

Phytoestrogens Modulate the Expression of 17α-Estradiol Metabolizing Enzymes in Cultured MCF-7 Cells

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

Summary

The activation of 17β-estradiol (E2) to 2-hydroxyestradiol (2-HO-E2), the more genotoxic 4-hydroxyestradiol (4-HO-E2), and the oxidation to the respective quinones constitutes a risk factor in hormonal carcinogenesis. 2-HO-E2 is formed by cytochrome P450 CYP1A1, and 4-HO-E2 is formed by CYP1B1. Both are detoxified by catechol-O-methyltransferase (COMT), whereas their quinones are inactivated by NADPH-quinone-oxidoreductase (QR). Since the soy isoflavones genistein (GEN) and daidzein (DAI) are widely consumed due to their putative protective function in breast carcinogenesis, we examined the influence of E2, GEN, and DAI on CYP1A1/1B1, COMT, and QR expression in MCF-7 cells by reverse transcription/competitive PCR. CYP1A1 and COMT enzyme activity were determined using ethoxyresorufin and quercetin as substrates. Furthermore, estrogen receptor (ER)-regulated cell proliferation was determined by E-screen. E2, GEN, and DAI inhibited the expression of CYP1A1, COMT, and QR. The maximum effect (reduction by 40–80%, depending on the gene product and compound) was obtained at 100pM E2,1 μM GEN, and 10μM DAI, which also induced the most pronounced cell proliferation in the E-screen. In contrast, expression of CYP1B1 was only slightly affected. CYP1A1 and COMT mRNA levels correlated with enzyme activities. The ER antagonist ICI 182,780 reversed the E2- and isoflavone-mediated effects. Thus, GEN and DAI at estrogen-active concentrations stimulate the formation of the more E2 genotoxic metabolites and inhibit the detoxification of catechol and quinone estrogens in estrogen-responsive tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavalieri E, Chakravarti D, Guttenplan J, et al. (2006) Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766: 63–78.

    PubMed  CAS  Google Scholar 

  2. Guillemette C, Belanger A, Lepine J (2004) Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview. Breast Cancer Res 6: 246–254.

    Article  PubMed  CAS  Google Scholar 

  3. Badawi AF, Cavalieri EL, Rogan EG (2001) Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 50: 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  4. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19: 1–27.

    Article  PubMed  Google Scholar 

  5. Ball P, Knuppen R (1980) Catecholoestrogens (2-and 4-hydroxyoestrogens): chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinol Suppl (Copenh) 232: 1–127.

    CAS  Google Scholar 

  6. Albin N, Massaad L, Toussaint C, et al. (1993) Main drug-metabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res 53: 3541–3546.

    PubMed  CAS  Google Scholar 

  7. Dawling S, Hachey DL, Roodi N, et al. (2004) In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4-hydroxyestradiol. Chem Res Toxicol 17: 1258–1264.

    Article  PubMed  CAS  Google Scholar 

  8. Danson S, Ward TH, Butler J, et al. (2004) DT-diaphorase: a target for new anticancer drugs. Cancer Treat Rev 30: 437–449.

    Article  PubMed  CAS  Google Scholar 

  9. Adlercreutz H, Heinonen SM, Penalvo-Garcia J (2004) Phytoestrogens, cancer and coronary heart disease. Biofactors 22: 229–236.

    Article  PubMed  CAS  Google Scholar 

  10. Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65: 995–1016.

    Article  PubMed  CAS  Google Scholar 

  11. Limer JL, Speirs V (2004) Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res 6: 119–127.

    Article  PubMed  CAS  Google Scholar 

  12. Rogan EG, Badawi AF, Devanesan PD, et al. (2003) Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis 24: 697–702.

    Article  PubMed  CAS  Google Scholar 

  13. Singh S, Chakravarti D, Edney JA, et al. (2005) Relative imbalances in the expression of estrogen-metabolizing enzymes in the breast tissue of women with breast carcinoma. Oncol Rep 14: 1091–1096.

    PubMed  CAS  Google Scholar 

  14. Mitrunen K, Hirvonen A (2003) Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res 544: 9–41.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu BT, Liehr JG (1996) Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J Biol Chem 271: 1357–1363.

    Article  PubMed  CAS  Google Scholar 

  16. Spink DC, Katz BH, Hussain MM, et al. (2003) Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells. Carcinogenesis 24: 1941–1950.

    Article  PubMed  CAS  Google Scholar 

  17. Payne J, Jones C, Lakhani S, et al. (2000) Improving the reproducibility of the MCF-7 cell proliferation assay for the detection of xenoestrogens. Sci Total Environ 248: 51–62.

    Article  PubMed  CAS  Google Scholar 

  18. Soto AM, Sonnenschein C, Chung KL, et al. (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103 (Suppl 7): 113–122.

    Article  PubMed  CAS  Google Scholar 

  19. Ricci MS, Toscano DG, Mattingly CJ, et al. (1999) Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem 274: 3430–3438.

    Article  PubMed  CAS  Google Scholar 

  20. Safe S, Wormke M, Samudio I (2000) Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. J Mammary Gland Biol Neoplasia 5: 295–306.

    Article  PubMed  CAS  Google Scholar 

  21. Parvez S, Ismahan G, Raza-Bukhari A, et al. (1978) Activity of catechol-o-methyltransferase in brain regions and adrenal gland during the oestrus cycle. J Neural Transm 42: 305–312.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu BT, Liehr JG (1994) Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol 125: 149–158.

    Article  PubMed  CAS  Google Scholar 

  23. Xie T, Ho SL, Ramsden D (1999) Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol 56: 31–38.

    PubMed  CAS  Google Scholar 

  24. Rasmussen TH, Nielsen JB (2002) Critical parameters in the MCF-7 cell proliferation bioassay (E-Screen). Biomarkers 7: 322–336.

    Article  PubMed  CAS  Google Scholar 

  25. Montano MM, Bianco NR, Deng H, et al. (2005) Estrogen receptor regulation of quinone reductase in breast cancer: implications for estrogen-induced breast tumor growth and therapeutic uses of tamoxifen. Front Biosci 10: 1440–1461.

    Article  PubMed  CAS  Google Scholar 

  26. Lee JM, Anderson PC, Padgitt JK, et al. (2003) Nrf2, not the estrogen receptor, mediates catechol estrogen-induced activation of the antioxidant responsive element. Biochim Biophys Acta 1629: 92–101.

    PubMed  CAS  Google Scholar 

  27. Setchell KD, Faughnan MS, Avades T, et al. (2003) Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr 77: 411–419.

    PubMed  CAS  Google Scholar 

  28. Kurzer MS (2002) Hormonal effects of soy in premenopausal women and men. J Nutr 132: 570S–573S.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Wagner, J., Jiang, L., Lehmann, L. (2008). Phytoestrogens Modulate the Expression of 17α-Estradiol Metabolizing Enzymes in Cultured MCF-7 Cells. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_65

Download citation

Publish with us

Policies and ethics