Skip to main content

Part of the book series: International Series In Operations Research amp; Mana ((ISOR,volume 99))

Efficient methods to model and optimise the design of open pit mines have been known for many years. Although the underground mine design problem is conceptually more difficult it has a similar potential for optimisation. Recent research demonstrates some useful progress in this topic. Here we provide an overview of some of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Akaike and K. Dagdelen, “A strategic production method for an open pit mine”, 28th APCOM Symposium, Golden, Colorado, 1999, 729-738.

    Google Scholar 

  • C. Alford “Optimization in underground mine design”, 25th APCOM AusIMM, 1995.

    Google Scholar 

  • C. Alford, Optimization in underground mine design. PhD, Department of Mathematics and Statistics, The University of Melbourne, 2006.

    Google Scholar 

  • M. Ataee-pour, A heuristic algorithm to optimize stope boundaries. PhD, Faculty of Engineering, University of Wollongong, 2000.

    Google Scholar 

  • R.W. Barbaro and R.V. Ramani, “Generalized multi-period MIP model for production scheduling and processing facilities selection”, Mining Engineering, 38 (1986), 107-114.

    Google Scholar 

  • A. Boucher, R. Dimitrakopoulos and J.A. Vargas-Guzman, “Joint simulations, optimal drillhole spacing and the role of the stockpile”, in Geostatistics Banff 2004 (Quantitative Geology and Geostatistics, 14), Springer, Berlin, 2005.

    Google Scholar 

  • M. Brazil, D. A. Thomas and J. F. Weng, “Gradient constrained minimal Steiner trees”, in Network Design: Connectivity and Facilities Location (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 40), American Mathematical Society, Providence, 1998, pp. 23-38.

    Google Scholar 

  • M. Brazil, J. H. Rubinstein, D. A. Thomas, D. Lee, J. F. Weng and N. C. Wormald, “Network optimization of underground mine design”. The Australasian Institute for Mining and Metallurgy Proceedings, Vol. 305, No.1, pp. 57-65, 2000.

    Google Scholar 

  • M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F.Weng and N. C. Wormald, “Gradient-constrained minimal Steiner trees (I). Fundamentals”, Journal of Global Optimization, 21, (2001), 139-155,.

    Article  Google Scholar 

  • M. Brazil, D.H. Lee, J.H. Rubinstein, D.A. Thomas, J.F. Weng, N.C. Wormald, “A network model to optimize cost in underground mine design”, Trans. South African Institute of Electrical Engineers, 93 (2002), 97-103.

    Google Scholar 

  • M. Brazil, D.H. Lee, M. Van Leuven, J.H. Rubinstein, D.A. Thomas, N.C. Wormald, “Optimizing declines in underground mines”, Mining Technology: Trans. of the Institution of Mining and Metallurgy, Section A, 112 (2003), 164-170.

    Article  Google Scholar 

  • M. Brazil, D.H. Lee, J.H. Rubinstein, D.A. Thomas, J.F. Weng, N.C. Wormald, “Optimization in the design of underground mine access”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 3-6.

    Google Scholar 

  • M. Brazil, D.A. Thomas, J.F. Weng, D.H. Lee, J.H. Rubinstein, “Cost optimization for underground mining networks”, Optimization and Engineering, 6 (2005), 241-256.

    Article  Google Scholar 

  • L. Caccetta and S. Hill, “An application of branch and cut to open pit mine scheduling”, Journal of Global Optimization, 27 (2003), 349-365,.

    Article  Google Scholar 

  • P.G. Carter, D.H. Lee and H. Baarsma, “Optimization methods for the selection of an underground mining method”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 7-12.

    Google Scholar 

  • N.M. Cheimanoff, E.P. Deliac and J.L. Mallet, “GEOCAD: An alternative CAD artificial intelligence tool that helps moving from geological resources to mineable reserves”, 21st APCOM, 1989.

    Google Scholar 

  • J. Deraisme, C. de Fouquent and H. Fraisse, “Geostatistical orebody model for computer optimization of profits from different underground mining methods”, 18th APCOM IMM, 1984.

    Google Scholar 

  • L.E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”. American Journal of Mathematics, 79 (3) (1957), 497-516.

    Article  Google Scholar 

  • G. Froyland, M. Menabde, P. Stone, and D. Hodson, “The value of additional drilling to open pit mining projects”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 169-176.

    Google Scholar 

  • M.E. Gershon, “Mine scheduling optimization with mixed integer programming”, Society of Mining Engineers of AIME, Preprint No 82-324, 1982.

    Google Scholar 

  • M. Gershon and F.H. Murphy “Using dynamic programming for aggregating cuts in a single drillhole”, International Journal of Surface Mining, 1 (1987), 35-40.

    Google Scholar 

  • M. Gershon and F.H. Murphy “Optimizing single hole mine cuts by dynamic programming”, European Journal of Operational Research, 38 (1989), 56-62.

    Article  Google Scholar 

  • P. Goovaerts, Geostatistics for Natural Resources Evaluation. New York, Oxford University Press, 1997.

    Google Scholar 

  • N. Grieco and R. Dimitrakopoulos, “Grade uncertainty in stope design: Improving the optimization process”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 249-255.

    Google Scholar 

  • B. Hall and C. Stewart, “Optimising the strategic mine plan - methodologies, findings, successes and failures”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 49-58.

    Google Scholar 

  • F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem (Annals of Discrete Mathematics 53). Elsevier, Amsterdam, 1992.

    Google Scholar 

  • M. Kuchta, A. Newman and E. Topal, “Production scheduling at LKAB's Kiruna Mine using mixed integer programming”, Mining Engineering 55 (2003), 35-40.

    Google Scholar 

  • K.F. Lane, The Economic Definition of Ore. London, Mining Journal Books Limited, 1988.

    Google Scholar 

  • H. Lerchs, and I. F. Grossmann, “Optimum design of open-pit mines,” Trans. Canadian Institute of Mining and Metallurgy, Vol. LXVIII (1965) 17-24.

    Google Scholar 

  • Mineral Industries Computing Limited, Datamine Studio V2 User Documentation, 2005.

    Google Scholar 

  • F. Muge, P. Pina and J.L. Vieira, “Some applications of image analysis techniques to mine planning”, 24th APCOM IMM, 1995.

    Google Scholar 

  • A. Newman and M. Kuchta, “Eliminating variables and using aggregation to improve the performance of an integer programming production scheduling model for an underground mine”, preprint, 2003.

    Google Scholar 

  • J. Poniewierski, G. MacSporran and I. Sheppard, “Optimization of cut-off grade at Mount Isa Mines Limited's Enterprise Mine”, Conference Proceedings - Twelfth International Symposium on Mine Planning and Equipment Selection (MPES), 2003, pp. 531-538.

    Google Scholar 

  • J-M. Rendu, “Computerized estimation of ore and waste zones in complex mineral deposits”, Society of Mining Engineers of AIME, Preprint No 82-95, 1982.

    Google Scholar 

  • J-M. Rendu, “Orebody Modelling, mine planning, reserve evaluation and the regulatory environment”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 201-208.

    Google Scholar 

  • J. Serra, Image Analysis and Mathematical Morphology. New York, Academic Press, 1982.

    Google Scholar 

  • M.L. Smith, I. Sheppard and G. Karunatillake “Using MIP for strategic life-of-mine planning of the lead/zinc stream at Mount Isa Mines”, APCOM 2003 Conference, 2003, pp. 1-10.

    Google Scholar 

  • G. Thomas and A. Earl, “The application of second-generation stope optimization tools in underground cut-off grade analysis”, Whittle Strategic Mine Planning Conference, 1999.

    Google Scholar 

  • P. Trout, “Underground mine production scheduling using mixed integer programming”, APCOM XXV 1995 Conference, 1995, pp. 395-400.

    Google Scholar 

  • G. Whittle, “Global asset optimization”, Proceedings Orebody Modelling and Strategic Mine Planning, 2004, pp. 261-266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alford, C., Brazil, M., Lee, D.H. (2007). Optimisation in Underground Mining. In: Weintraub, A., Romero, C., Bjørndal, T., Epstein, R., Miranda, J. (eds) Handbook Of Operations Research In Natural Resources. International Series In Operations Research amp; Mana, vol 99. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71815-6_30

Download citation

Publish with us

Policies and ethics