Skip to main content

Interplay Between Dopamine and Acetylcholine in the Modulation of Attention

  • Chapter
Monoaminergic Modulation of Cortical Excitability
  • 503 Accesses

Attention involves several functions such as alertness, shift, stabilization, and distractor suppression. Alertness is a global mental state characterized by increased motivation and lowered thresholds for encoding new information. Attention shift allows either transiting from a passive inattentive to an active focused state, or refocusing perceptual resources from a previously targeted perceptual object to a more salient one. During attention stabilization perceptual resources are kept concentrated onto a particular target in a manner that the neural activity evoked by selected stimuli is momentarily enhanced. Suppression is an active process by which neural activity evoked by task irrelevant stimuli is diminished. These functions are impaired in several neuropsychiatric conditions. We review clinical and neurophysiological data in humans and laboratory animals suggesting that acetylcholine and dopamine interact in the neocortex to produce purposeful attention.

It is proposed that a more satisfactory theory of attention needs to integrate both tonic and phasic effects produced by acetylcholine and dopamine. In the model here proposed, nicotinic receptors are thought to play a pivotal role in the enhancement of neural activity evoked by task relevant stimuli. Muscarinic receptors are proposed to be involved in alertness, and dopaminergic receptors in the temporary representation of intermediate goals. A combination of signals triggered by muscarinic and dopaminergic receptor coactivation may facilitate the suppression of neural activity evoked by task irrelevant stimuli. A better understanding of the interplay between dopamine and acetylcholine in attention modulation may help to develop better psychopharmacological interventions for neuropsychiatric conditions in which attention is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkondon, M. and Albuquerque, E.X. (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 145, 109-120.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, H.M., Burk, J.A., Hodgson, E.M., Sarter, M., and Bruno, J.P. (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience. 114, 451-460.

    Article  PubMed  CAS  Google Scholar 

  • Arroyo, G., Aldea, M., Fuentealba, J., and Garcia, A.G. (2002) [Nicotinic Receptor, galan-tamine and Alzheimer disease]. Rev Neurol. 34, 1057-1065.

    PubMed  CAS  Google Scholar 

  • Atzori, M., Kanold, P.O., Pineda, J.C., Flores-Hernandez, J., and Paz, R.D. (2005) Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuro-science. 134, 1153-1165.

    CAS  Google Scholar 

  • Behl, P., Bocti, C., Swartz, R.H., Gao, F., Sahlas, D.J., Lanctot, K.L., Streiner, D.L., and Black, S.E. (2007) Strategic subcortical hyperintensities in cholinergic pathways and ex-ecutive function decline in treated Alzheimer patients. Arch Neurol. 64, 266-272.

    Article  PubMed  Google Scholar 

  • Blatt, G.J., Fitzgerald, C.M., Guptill, J.T., Booker, A.B., Kemper, T.L., and Bauman, M.L. (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 31, 537-543.

    Article  PubMed  CAS  Google Scholar 

  • Brunel, N. and Wang, X.J. (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci. 11, 63-85.

    Article  PubMed  CAS  Google Scholar 

  • Bubser, M. and Koch, M. (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl). 113, 487-492.

    Article  CAS  Google Scholar 

  • Buhl, E.H., Tamas, G., and Fisahn, A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol. 513 ( Pt 1), 117-126.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, M.L. (2001) On the role of prefrontal cortex glutamate for the antithetical phenome-nology of obsessive compulsive disorder and attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 25, 5-26.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis, C., Franowicz, M.N., and Goldman-Rakic, P.S. (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci. 4, 311-316.

    Article  PubMed  CAS  Google Scholar 

  • Cox, C.L., Metherate, R., and Ashe, J.H. (1994) Modulation of cellular excitability in neocor-tex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Syn-apse. 16, 123-136.

    Article  CAS  Google Scholar 

  • Crowell, T.A., Luis, C.A., Cox, D.E., and Mullan, M. (2007) Neuropsychological comparison of Alzheimer’s disease and dementia with lewy bodies. Dement Geriatr Cogn Disord. 23, 120-125.

    Article  PubMed  Google Scholar 

  • Cruikshank, S.J. and Weinberger, N.M. (2001) In vivo Hebbian and basal forebrain stimula-tion treatment in morphologically identified auditory cortical cells. Brain Res. 891, 78-93.

    Article  PubMed  CAS  Google Scholar 

  • Day, J.C., Tham, C.S., and Fibiger, H.C. (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur J Pharmacol. 263, 285-292.

    Article  PubMed  CAS  Google Scholar 

  • de Lanerolle, N.C. and Millam, J.R. (1980) Dopamine, chick behavior, and states of attention. J Comp Physiol Psychol. 94, 346-352.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol. 375, 13-30.

    Article  PubMed  CAS  Google Scholar 

  • Dollfus, S., Petit, M., Menard, J.F., and Lesieur, P. (1992) Amisulpride versus bromocriptine in infantile autism: a controlled crossover comparative study of two drugs with opposite effects on dopaminergic function. J Autism Dev Disord. 22, 47-60.

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz, D. and Seamans, J.K. (2002) The computational role of dopamine D1 receptors in working memory. Neural Netw. 15, 561-572.

    Article  PubMed  Google Scholar 

  • Durstewitz, D., Kelc, M., and Gunturkun, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci. 19, 2807-2822.

    PubMed  CAS  Google Scholar 

  • Eilam, D., Zor, R., Szechtman, H., and Hermesh, H. (2006) Rituals, stereotypy and compul-sive behavior in animals and humans. Neurosci Biobehav Rev. 30, 456-471.

    Article  PubMed  Google Scholar 

  • Ewert, J.P., Buxbaum-Conradi, H., Glagow, M., Rottgen, A., Schurg-Pfeiffer, E., and Schwippert, W.W. (1999) Forebrain and midbrain structures involved in prey-catching behaviour of toads: stimulus-response mediating circuits and their modulating loops. Eur J Morphol. 37, 172-176.

    Article  PubMed  CAS  Google Scholar 

  • Ewert, J.P., Buxbaum-Conradi, H., Dreisvogt, F., Glagow, M., Merkel-Harff, C., Rottgen, A., Schurg-Pfeiffer, E., and Schwippert, W.W. (2001) Neural modulation of visuomotor func-tions underlying prey-catching behaviour in anurans: perception, attention, motor per-formance, learning. Comp Biochem Physiol A Mol Integr Physiol. 128, 417-461.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari-Dileo, G., Waelbroeck, M., Mash, D.C., and Flynn, D.D. (1994) Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol Pharmacol. 46, 1028-1035.

    PubMed  CAS  Google Scholar 

  • Foldi, N.S., White, R.E., and Schaefer, L.A. (2005) Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer’s disease. Int J Geriatr Psychiatry. 20, 485-488.

    Article  PubMed  Google Scholar 

  • Foster, D.J. and Wilson, M.A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 440, 680-683.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J.M. (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol. 36, 61-78.

    PubMed  CAS  Google Scholar 

  • Gao, W.J., Krimer, L.S., and Goldman-Rakic, P.S. (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA. 98, 295-300.

    Article  PubMed  CAS  Google Scholar 

  • Giniatullin, R., Nistri, A., and Yakel, J.L. (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 28, 371-378.

    Article  PubMed  CAS  Google Scholar 

  • Goforth, H.W. and Rao, M.S. (2003) Improvement in behaviour and attention in an autistic patient treated with ziprasidone. Aust N Z J Psychiatry. 37, 775-776.

    Article  PubMed  Google Scholar 

  • Grace, A.A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine sys-tem responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 41, 1-24.

    Article  PubMed  CAS  Google Scholar 

  • Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., Fenton, W.S., Frese, F., Goldberg, T.E., Heaton, R.K., Keefe, R.S., Kern, R.S., Kraemer, H., Stover, E., Weinberger, D.R., Zalcman, S., and Marder, S.R. (2004) Approaching a con-sensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS confer-ence to select cognitive domains and test criteria. Biol Psychiatry. 56, 301-307.

    Article  PubMed  Google Scholar 

  • Higashima, M., Nagasawa, T., Oka, T., Tsukada, T., Okamoto, T., Komai, Y., Kawasaki, Y., and Koshino, Y. (2005) Neuropsychological correlates of an attention-related negative component elicited in an auditory oddball paradigm in schizophrenia. Neuropsychobiol-ogy. 51, 177-182.

    Article  Google Scholar 

  • Ishii, M. and Kurachi, Y. (2006) Muscarinic acetylcholine receptors. Curr Pharm Des. 12, 3573-3581.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B.A., Roache, J.D., Ait-Daoud, N., Wallace, C., Wells, L.T., and Wang, Y. (2005) Effects of isradipine on methamphetamine-induced changes in attentional and perceptual-motor skills of cognition. Psychopharmacology (Berl). 178, 296-302.

    Article  CAS  Google Scholar 

  • Kimura, F. (2000) Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci Res. 38, 19-26.

    Article  PubMed  CAS  Google Scholar 

  • Koch, M. and Bubser, M. (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci. 6, 1837-1845.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, R., Bruno, J.P., and Sarter, M. (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex. 16, 9-17.

    Article  PubMed  Google Scholar 

  • Krnjevic, K. (1993) Central cholinergic mechanisms and function. Prog Brain Res. 98, 285-292.

    Article  PubMed  CAS  Google Scholar 

  • Lavine, N., Reuben, M., and Clarke, P.B. (1997) A population of nicotinic receptors is associ-ated with thalamocortical afferents in the adult rat: laminal and areal analysis. J Comp Neurol. 380, 175-190.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J.E. and Grace, A.A. (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 46, 703-713.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz, C.M., Lee, M., Perry, R.H., Baumann, M., Court, J.A., and Perry, E.K. (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res. 123, 81-90.

    Article  PubMed  CAS  Google Scholar 

  • Mash, D.C. and Potter, L.T. (1986) Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience. 19, 551-564.

    Article  PubMed  CAS  Google Scholar 

  • McGaughy, J., Dalley, J.W., Morrison, C.H., Everitt, B.J., and Robbins, T.W. (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infu-sions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci. 22, 1905-1913.

    PubMed  CAS  Google Scholar 

  • McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O’Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C., Perry, E.K., Aarsland, D., Arai, H., Ballard, C.G., Boeve, B., Burn, D.J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C.G., Gomez-Tortosa, E., Halliday, G., Hansen, L.A., Hardy, J., Iwatsubo, T., Kalaria, R.N., Kaufer, D., Kenny, R.A., Korczyn, A., Kosaka, K., Lee, V.M., Lees, A., Litvan, I., Londos, E., Lopez, O.L., Minoshima, S., Mizuno, Y., Molina, J.A., Mukaetova-Ladinska, E.B., Pasquier, F., Perry, R.H., Schulz, J.B., Trojanowski, J.Q., and Yamada, M. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 65, 1863-1872.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem. 11, 43-49.

    Article  PubMed  Google Scholar 

  • Metherate, R. and Ashe, J.H. (1991) Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res. 559, 163-167.

    Article  PubMed  CAS  Google Scholar 

  • Metherate, R. and Hsieh, C.Y. (2003) Regulation of glutamate synapses by nicotinic acetyl-choline receptors in auditory cortex. Neurobiol Learn Mem. 80, 285-290.

    Article  PubMed  CAS  Google Scholar 

  • Metherate, R. and Weinberger, N.M. (1989) Acetylcholine produces stimulus-specific recep-tive field alterations in cat auditory cortex. Brain Res. 480, 372-377.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C.L., Sarter, M., and Bruno, J.P. (2000) Repeated pretreatment with amphetamine sensi-tizes increases in cortical acetylcholine release. Psychopharmacology (Berl). 151, 406-415.

    Article  CAS  Google Scholar 

  • Noisin, E.L. and Thomas, W.E. (1988) Ontogeny of dopaminergic function in the rat midbrain tegmentum, corpus striatum and frontal cortex. Brain Res. 469, 241-252.

    PubMed  CAS  Google Scholar 

  • Passetti, F., Dalley, J.W., O’Connell, M.T., Everitt, B.J., and Robbins, T.W. (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual at-tentional task. Eur J Neurosci. 12, 3051-3058.

    Article  PubMed  CAS  Google Scholar 

  • Penschuck, S., Chen-Bee, C.H., Prakash, N., and Frostig, R.D. (2002) In vivo modulation of a cortical functional sensory representation shortly after topical cholinergic agent applica-tion. J Comp Neurol. 452, 38-50.

    Article  PubMed  Google Scholar 

  • Perriol, M.P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J.L., Laureau, E., Pasquier, F., Defebvre, L., and Destee, A. (2005) Disturbance of sensory filtering in dementia with Lewy bodies: comparison with Parkinson’s disease dementia and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 76, 106-108.

    Article  PubMed  Google Scholar 

  • Plenz, D. and Kital, S.T. (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 400, 677-682.

    Article  PubMed  CAS  Google Scholar 

  • Riccio, C.A. and Reynolds, C.R. (2001) Continuous performance tests are sensitive to ADHD in adults but lack specificity. A review and critique for differential diagnosis. Ann N Y Acad Sci. 931, 113-139.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T.W. and Everitt, B.J. (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem. 78, 625-636.

    Article  PubMed  CAS  Google Scholar 

  • Sarter, M., Nelson, C.L., and Bruno, J.P. (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull. 31, 117-138.

    Article  PubMed  Google Scholar 

  • Sarter, M., Bruno, J.P., Parikh, V., Martinez, V., Kozak, R., and Richards, J.B. (2006) Fore-brain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. Exs. 98, 65-86.

    PubMed  CAS  Google Scholar 

  • Schultz, W. (1998) Predictive reward signal of dopamine neurons. J Neurophysiol. 80, 1-27.

    PubMed  CAS  Google Scholar 

  • Schultz, W. (2002) Getting formal with dopamine and reward. Neuron. 36, 241-263.

    Article  PubMed  CAS  Google Scholar 

  • Sealfon, S.C. and Olanow, C.W. (2000) Dopamine receptors: from structure to behavior. Trends Neurosci. 23, S34-S40.

    Article  PubMed  CAS  Google Scholar 

  • Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F., and Sejnowski, T.J. (2001a) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA. 98, 301-306.

    Article  PubMed  CAS  Google Scholar 

  • Seamans, J.K., Gorelova, N., Durstewitz, D., and Yang, C.R. (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci. 21, 3628-3638.

    PubMed  CAS  Google Scholar 

  • Seamans, J.K. and Yang, C.R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 74, 1-58.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, K., Brucher, F., Granger, R., Lynch, G., and Taketani, M. (2000) Origins and distri-bution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci. 20, 8462-8473.

    PubMed  CAS  Google Scholar 

  • Takahashi, H., Higuchi, M., and Suhara, T. (2006) The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry. 59, 919-928.

    Article  PubMed  CAS  Google Scholar 

  • Tandon, R. (1999) Cholinergic aspects of schizophrenia. Br J Psychiatry Suppl, 7-11.

    Google Scholar 

  • Tseng, K.Y. and O’Donnell, P. (2005) Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex. 15, 49-57.

    Article  PubMed  Google Scholar 

  • Tseng, K.Y. and O’Donnell, P. (2006) Dopamine Modulation of Prefrontal Cortical Interneu-rons Changes during Adolescence. Cereb Cortex. Jul 3; [Epub ahead of print]

    Google Scholar 

  • Ungless, M.A. (2004) Dopamine: the salient issue. Trends Neurosci. 27, 702-706.

    Article  PubMed  CAS  Google Scholar 

  • Voytko, M.L., Olton, D.S., Richardson, R.T., Gorman, L.K., Tobin, J.R., and Price, D.L. (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci. 14, 167-186.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Zhou, F.M., and Dani, J.A. (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol. 66, 538-544.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Atzori, M., Paz, R.D. (2007). Interplay Between Dopamine and Acetylcholine in the Modulation of Attention. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_19

Download citation

Publish with us

Policies and ethics