Skip to main content

Kinetics of Global Geochemical Cycles

  • Chapter
Kinetics of Water-Rock Interaction

Geochemical systems of the Earth’s surface and interior are often studied by means of conceptual models that represent them as geochemical or biogeochemical cycles of chemical elements. Such models usually address the various geological, geochemical, geophysical, and biological processes within the cycle or system, and they focus on the model’s ability to evaluate the system changes at different time scales, often extending from the remote past into the future. The time dimension of changes taking place in the different parts of the Earth System makes it necessary to understand the mechanisms and rates of the numerous processes that control the element interactions in geochemical systems of different physical structures and degrees of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarède F. (1995) Introduction to Geochemical Modeling. Cambridge University Press, Cambridge, xx + 543 pp.

    Google Scholar 

  • Albarède F. (2003) Geochemistry: An Introduction. Cambridge University Press, Cambridge, xiv + 248 pp.

    Google Scholar 

  • Alkattan M., Oelkers E. H., Dandurand J.-L., and Schott J. (1998) An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80 C. Chem. Geol. 151, 199-214.

    Google Scholar 

  • Amiotte-Suchet, P., Probst, A., and Probst, J.-L., 1995. Influence of acid rain on CO2 consumption by rock weathering: local and global scales. Water Air Soil Pollut. 85, 1563-1568.

    Google Scholar 

  • Amiotte-Suchet P., Aubert D., Probst J.-L., Gauthier-Lafaye F., Probst A., Andreux F., and Viville D. (1999) δ13 C pattern of dissolved inorganic carbon in a small granitic catchment; the Strengbach case study (Vosges Mountains, France). Chem. Geol. 159(1-4), 129-145.

    Google Scholar 

  • Amram K. and Ganor J. (2005) The combined effect of pH and temperature on smectite dissolution rate under acidic conditions. Geochim. Cosmochim. Acta 69, 2535-2546.

    Google Scholar 

  • Anderson L. D., Delaney M. L., and Faul K. L. (2001) Carbon to phosphorus ratios in sediments: Implications for nutrient cycling. Global Biogeochem. Cycles 15(1), 65-79.

    Google Scholar 

  • Anderson S. P. (2005) Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphology 67(1-2), 147-157.

    Google Scholar 

  • Anderson S. P., Drever J. I., Frost C. D., and Holden P. (2000) Chemical weathering in the foreland of a retreating glacier. Geochim. Cosmochim. Acta 64(7), 1173-1189.

    Google Scholar 

  • Amundson R. (2003) Soil formation. In Treatise on Geochemistry, Vol. 3 (ed. J. I. Drever). Elsevier, Amsterdam, pp. 1-35.

    Google Scholar 

  • Arvidson R. S., Ertan I. E., Amonette J. E., and L üttge A. (2003) Variation in calcite dissolution rates: a fundamental problem? Geochim. Cosmochim. Acta 67, 1623-1634.

    Google Scholar 

  • Ajtay G. L., Ketner P., and Duvigneaud P. (1979) Terrestrial primary production and phytomass. In: The Global Carbon Cycle (eds. B. Bolin, E. T. Degens, S. Kempe and P. Ketner), SCOPE 13 (Scientific Committee On Problems of the Environment), Unwin Brothers, Gresham Press, Kingston-on-Thames, pp. 129-181.

    Google Scholar 

  • Bassham J. A. (1974) Photosynthesis. Encycl. Brit., Macropaedia, 1974 edition, 14, 365-373.

    Google Scholar 

  • Batjes N. H. (1996) Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 47, 151-163.

    Google Scholar 

  • Bauer A. and Berger G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35 degrees and 80 degrees C. Appl. Geochem. 13(7), 905-916.

    Google Scholar 

  • Baumgartner A. and Reichel E. (1975) The World Water Balance. R. Oldenburg Verlag, München, Germany, 181 pp.

    Google Scholar 

  • Becker G. F. (1910) The age of the earth. Smithsonian Misc. Collect. 56, 6-28.

    Google Scholar 

  • Berner E. K. and Berner R. A. (1996) The Global Environment: Water, Air and Geochemical Cycles. Prentice-Hall, Upper Saddle River, NJ, 376 pp.

    Google Scholar 

  • Berner R. A. (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451-473.

    Google Scholar 

  • Berner R. A. and Kothavala Z. (2001) Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182-204.

    Google Scholar 

  • Berner R. A. and Maasch K. A. (1996) Chemical weathering and controls on atmospheric O2 and CO2 : fundamental principles were enunciated by J. J. Ebelmen in 1845. Geochim. Cosmochim. Acta 60, 1633-1637.

    Google Scholar 

  • Berner R. A. and Rao J.-L. (1994) Phosphorus in sediments of the Amazon river and estuary: implications for the global flux of phosphorus to the sea. Geochim. Cosmochim. Acta 58, 2333-2339.

    Google Scholar 

  • Blum A. E. and Lasaga A. C. (1988) Role of surface speciation in the lowtemperature dissolution of minerals. Nature 331(6155), 431-433.

    Google Scholar 

  • Blum A. E. and Stillings L. L. (1995) Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Rev. Mineral. 31, 291-351. Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Bosbach D., Charlet L., Bickmore B., and Hochella Jr. M. F. (2000) The dissolution of hectorite; in-situ, real-time observations using atomic force microscopy. Am. Mineral. 85(9), 1209-1216.

    Google Scholar 

  • Bowen N. L. (1928) The Evolution of Igneous Rocks. Princeton University Press, Princeton, NJ, x + 332 pp.

    Google Scholar 

  • Brandt F., Bosbach D., Krawczyk-Baersch E., Arnold T., and Bernhard G. (2003) Chlorite dissolution in the acid pH-range; a combined microscopic and macroscopic approach. Geochim. Cosmochim. Acta 67, 1451-1461.

    Google Scholar 

  • Broecker W. S. (1974) Chemical Oceanography. Harcourt Brace Jovanovich, New York, x + 214 pp.

    Google Scholar 

  • Brown E. T., Stallard R. F., Larsen M. C., Raisbeck G. M., and Yiou, F. (1995) Denudation rates determined from the accumulation of in situ-produced 10 Be in Luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett. 129, 193-202.

    Google Scholar 

  • Brown L. R., Renner M., and Flavin C. (1997) The Environmental Trends that are Shaping Our Future: Vital Signs 1997. W.W. Norton, New York, 165 pp.

    Google Scholar 

  • Burch T. E., Nagy K. L., and Lasaga A. C. (1993) Free energy dependence of albite dissolution kinetics at 80 C and pH 8.8. Chem. Geol. 105, 137-162.

    Google Scholar 

  • Busenberg E. and Plummer L. N. (1982) The kinetics of dissolution of dolomite in CO2 -H2 O systems at 1.5 to 65 C and 0 to 1 atm Pco2 . Am. J. Sci. 282, 45-78.

    Google Scholar 

  • Cama J., Ganor J., Ayora C., and Lasaga A. C. (2000) Smectite dissolution kinetics at 80 C and pH 8.8. Geochim. Cosmochim. Acta 64, 2701-2717.

    Google Scholar 

  • Cameron E. M., Hall G. E. M., Veizer J., and Krouse H. R. (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser river, British Columbia, Canada. Chem. Geol. 122(1-4), 149-169.

    Google Scholar 

  • Canfield D. E. and Raiswell R. (1991) Pyrite formation and fossil preservation. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds. P. A. Allison and D. E. G. Briggs). Plenum Press, New York, pp. 337-387.

    Google Scholar 

  • Carslaw H. S. and Jaeger J. C. (1959) Conduction of Heat in Solids, 2nd edition. Oxford University Press, Oxford, x + 510 pp.

    Google Scholar 

  • Cerling T. E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71(2), 229-240.

    Google Scholar 

  • Chameides W. L. and Perdue E. M. (1997) Biogeochemical Cycles. Oxford University Press, New York, x + 224 pp.

    Google Scholar 

  • Chester R. (2000) Marine Geochemistry, 2nd edition. Blackwell, Oxford, xiv + 506 pp.

    Google Scholar 

  • Chou L., Garrels R. M., and Wollast R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78, 269-282.

    Google Scholar 

  • Clow D.W. and Drever J. I. (1996) Weathering rates as a function of flow through an alpine soil. Chem. Geol. 132, 131-141.

    Google Scholar 

  • Colman A. S. and Holland H. D. (2000) The global diagenetic flux of phosphorus from marine sediments to the oceans; redox sensitivity and the control of atmospheric oxygen levels. Soc. Sediment. Geol. Spec. Pub. 66, 53-75.

    Google Scholar 

  • Croll J. (1871) On a method of determining the mean thickness of the sedimentary rocks of the globe. Geol. Mag. 8(97-102), 285-287.

    Google Scholar 

  • Cubillas P., K öhler S., Prieto M., Chaïrat C., and Oelkers E. H. (2005) Experimental determination of dissolution rates of calcite, aragonite, and bivalves. Chem. Geol. 216,59-77.

    Google Scholar 

  • Dalai T. K., Krishnaswami S., and Sarin M. M. (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 19,3397-3416.

    Google Scholar 

  • Deer W. A., Howie R. A., and Zussman J. (1975) An Introduction to the RockForming Minerals. Longman, London, x + 528 pp.

    Google Scholar 

  • de Jong E. and Kachanoski R. G. (1988) The importance of erosion in the carbon balance of prairie soils. Can. J. Soil Sci. 68, 111-119.

    Article  Google Scholar 

  • Delaney M. L. (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem. Cycles 12, 563-572.

    Google Scholar 

  • Dignon J. (1992) NOx and SOx emissions from fossil fuels: a global distribution. Atmospheric Environ. 26, 1157-1163.

    Google Scholar 

  • Dignon J. and Hameed S. (1989) Global emissions of nitrogen and sulfur oxides from 1860 to 1980. J. Air Poll. Control Assoc. 39, 180-186.

    Google Scholar 

  • Dong Z. B., Wang X. M., and Liu L. Y. (2000) Wind erosion in arid and semiarid China: an overview. J. Soil Water Conserv. 55, 439-444.

    Google Scholar 

  • Drever J. I. (1988) The Geochemistry of Natural Waters, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, xii + 388 pp.

    Google Scholar 

  • Drever J. I. (1997) The Geochemistry of Natural Waters, 3rd edition. Prentice-Hall, Upper Saddle River, NJ, xii + 388 pp.

    Google Scholar 

  • Drever J. I. and Clow D. W. (1995) Weathering rates in catchments. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Mineralogical Society of America, Washington, DC. Rev. Mineralogy 31, 463-483.

    Google Scholar 

  • Drever J. I., Murphy K. M., and Clow D.W. (1994) Field weathering rates versus laboratory dissolution rates: an update. Mineral. Mag. 58A, 239-240.

    Google Scholar 

  • Dudziak A. and Halas S. (1996) Influence of freezing and thawing on the carbon isotope composition in soil CO2 . Geoderma 69(3-4), 209-216.

    Google Scholar 

  • Dumas J. (1842) Essai de Statique Chimique des Êtres Organis és, 2 ème édit. Fortin, Masson, Paris, 4 + 88 pp.

    Google Scholar 

  • Edmond J. M., Palmer M. R., Measures C. I., Brown E. T., and Huh Y. (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim. Cosmochim. Acta 60, 2949-2974.

    Google Scholar 

  • Farmer C. E., deMenocal P. B., and Marchitto T. M. (2005) Holocene and deglacial temperature variability in the Benguela upwelling region: implications for low-latitude atmospheric circulation. Paleoceangr. 20, PA2018, doi:10.1029/2004PA001049.

    Google Scholar 

  • Faure G. (1998) Principles and Applications of Geochemistry, 2nd edition. PrenticeHall, Upper Saddle River, NJ, xv + 600 pp.

    Google Scholar 

  • Ferruzzi G. G. (1993) The character and rates of dissolution of pyroxenes and pyroxenoids. MS Thesis, University California, Davis, CA, 105 pp.

    Google Scholar 

  • Filippelli G. M. and Delaney M. L. (1994) The oceanic phosphorus cycle and continental weathering during the Neogene. Paleoceanography 9, 643-652.

    Google Scholar 

  • Fisher O. (1900) An estimate of the geological age of the earth, by J. Joly, M.A., etc. Geol. Mag., Decade 4 (New Series) 7, 124-132.

    Google Scholar 

  • Fleer V. N. (1982) The dissolution kinetics of anorthite (Ca2 Al2 Si2 O8 ) and synthetic strontium feldspar (SrAl2 Si2 O8 ) in aqueous solutions at temperatures below 100 C with applications to the geological disposal of radioactive nuclear wastes. Monograph, Pennsylvania State University, University Park, University Park, PA.

    Google Scholar 

  • Foster G. L. and Vance D. (2006) Negligible glacial-interglacial variation in continental chemical weathering rates. Nature 444, 918-921.

    Google Scholar 

  • Friedlingstein P., Fung I. Y., Holland E., John J. G., Brasseur G. P., Erickson D., and Schimel D. (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem. Cycles 9, 541-556.

    Google Scholar 

  • Friedman I. and O’Neil J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, 6th edition (ed. M. Fleischer). U.S. Geol. Survey Prof. Pap., 440-KK.

    Google Scholar 

  • Gaffron H. (1964) Photosynthesis. Encycl. Brit., 1964 edition, 17, 855-856B.

    Google Scholar 

  • Gaillardet J., Dupr é B., All ègre C. J., and Negrel P. (1997) Chemical and physical denudation in the Amazon river basin. Chem. Geol. 142, 141-173.

    Google Scholar 

  • Gaillardet J., Dupr é B., Louovat P., and All ègre C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3-30.

    Google Scholar 

  • Gaillardet J., Millot R., and Dupr é B. (2003) Chemical denudation rates of the western Canadian orogenic belt: the Stikine terrane. Chem. Geol. 201, 257-279.

    Google Scholar 

  • Galy A. and France-Lanord C. (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 159, 31-60.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1967) Origin of the chemical compositions of some springs and lakes. In Equilibrium Concepts in Natural Water Systems (ed. W. Stumm). Adv. Chem. Ser. 67, 222-242.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1971) Evolution of Sedimentary Rocks. W. W. Norton, New York, xvi + 397 pp.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1972) A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27-41.

    Google Scholar 

  • Garrels R. M. and Perry Jr. E. A. (1974) Cycling of carbon, sulfur and oxygen through geologic time. In The Sea, Vol. 5 (ed. E. D. Godlberg). Wiley, New York, pp. 303-336.

    Google Scholar 

  • Gautelier M., Oelkers E. H., and Schott J. (1999) An experimental study of dolomite dissolution rates as a function of pH from −0.5 to 5 and temperature from 25 to 80 C. Chem. Geol. 157, 13-26.

    Google Scholar 

  • Gertner G., Wang G., Fang S., and Anderson A. B. (2002) Effect and uncertainty of digital elevation model spatial resolutions on predicting the topographical factor for soil loss estimation. J. Soil Water Conserv. 57, 164-175.

    Google Scholar 

  • Gibbs M. T. and Kump L. R. (1994). Global chemical erosion during the last glacial maximum and the present; sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529-543.

    Google Scholar 

  • Gíslason S. R. and Eugster H. P. (1987) Meteoric water-basalt interactions. I: A laboratory study. Geochim. Cosmochim. Acta 51, 2827-2840.

    Google Scholar 

  • Gíslason S. R., Arnórsson S., and Ármannsson H. (1996) Chemical weathering of basalt in Southwest iceland: effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296, 837-907.

    Google Scholar 

  • Goldberg E. D. (1971) Atmospheric dust, the sedimentary cycle and man. Geophysics 1, 117-132.

    Google Scholar 

  • Goldich S. (1938) A study in rock-weathering. J. Geol. 46, 17-58.

    Google Scholar 

  • Graham, L. (1974) Heat. Encycl. Brit., Macropaedia, 1974 edition., Vol. 8, pp. 700-706; Micropaedia, 1974 edition., Vol. 4, 1007.

    Google Scholar 

  • Gregor C. B. (1970) Denudation of the continents. Nature 228, 273-275.

    Google Scholar 

  • Gregor C. B. (1980) Weathering rates of sedimentary and crystalline rocks. Proc. Kon. Ned. Akad. Wet. Ser. B Phys. Sci. 83, 173-181.

    Google Scholar 

  • Gregor C. B. (1988) Prologue: cyclic processes in geology, a historical sketch. In Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie and J. B. Maynard). Wiley, New York, pp. 5-16.

    Google Scholar 

  • Gregor C. B. (1992) Some ideas on the rock cycle: 1788-1988. Geochim. Cosmochim. Acta 56, 2993-3000.

    Google Scholar 

  • Guidry M. W. and Mackenzie F. T. (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim. Cosmochim. Acta 67, 2949-2963.

    Google Scholar 

  • Gutjahr A., Dabringhaus H., and Lacmann R. (1996) Studies of the growth and dissolution kinetics of CaCO3 polymorphs calcite and aragonite. I. Growth and dissolution rates in water. J. Crystal Growth 158, 296-309.

    Google Scholar 

  • Hagen L. J. (1991) A wind erosion prediction system to meet the users’ need. J. Soil Water Conserv. 46, 106-111.

    Google Scholar 

  • Hahn V. and Buchmann N. (2003) δ13 C, δ18 O, δ14 C of soil CO2 and soil respired CO2 . Abstracts of CarboEurope Conference, “The Continental Carbon Cycle”, Paper no. 72, Lisbon, Portugal, 19-21 March 2003. http://www.bgc.mpg.de/public/carboeur/workshop/Poster2/hahn1.htm.

  • Hahn V. and Buchmann N. (2005) Measurements of CO2 in soils at six sites in northern and southern Europe in 2001. Personal communication.

    Google Scholar 

  • Hameed S. and Dignon J. (1992) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970-1986. J. Air Waste Manag. Assoc. 42, 159-163.

    Google Scholar 

  • Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley, New York, xiv + 351 pp.

    Google Scholar 

  • Huertas F. J., Chou L., and Wollast R. (1999) Mechanism of kaolinite dissolution at room temperature and pressure; Part II, Kinetic study. Geochim. Cosmochim. Acta 63, 3261-3275.

    Google Scholar 

  • Huh Y. and Edmond J. M. (1999) The fluvial geochemistry of the rivers of eastern Siberia; III, Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal highlands. Geochim. Cosmochim. Acta 63,967-987.

    Google Scholar 

  • Huh Y., Tsoi M.-Y., Zaitsev A., and Edmond J. M. (1998a) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena river draining the sedimentary platform of the Siberian Craton. Geochim. Cosmochim. Acta 62, 1657-1676.

    Google Scholar 

  • Huh Y., Panteleyev G., Babich D., Zaitsev A., and Edmond J. M (1998b) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta 62, 2053-2075.

    Google Scholar 

  • Ingall E. D. and Van Cappellen P. (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373-386.

    Google Scholar 

  • Jacobson A. D., Blum J. D., and Walter L. M. (2002) Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochim. Cosmochim. Acta 66, 3417-3429.

    Google Scholar 

  • Jahnke R. A. (1992) The phosphorus cycle. In Global Biogeochemical Cycles (eds. S. S. Butcher, R. J. Charlson, G. H. Orians, and G. V. Wolfe). Academic Press, New York, pp. 301-315.

    Google Scholar 

  • Jeschke A. A. and Dreybrodt W. (2002) Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta 66, 3055-3062.

    Google Scholar 

  • Joly J. (1899) An estimate of the geological age of the earth. Royal Dublin Soc., Sci. Trans [2], 7, 23-66.

    Google Scholar 

  • Jordan G. and Rammensee W. (1998) Dissolution rates of calcite (1014) obtained by scanning force microscopy; microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochim. Cosmochim. Acta 62, 941-947.

    Google Scholar 

  • Kalinowski B. E. and Schweda P. (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochim. Cosmochim. Acta 60, 367-385.

    Google Scholar 

  • Karim A. and Veizer J. (2000) Weathering processes in the Indus river basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol. 170,153-177.

    Google Scholar 

  • Knauss K. G. and Wolery T. J. (1988) The dissolution kinetics of quartz as a function of pH and time at 70 C. Geochim. Cosmochim. Acta 52, 43-53.

    Google Scholar 

  • Knauss K. G. and Wolery T. J. (1989) Muscovite dissolution kinetics as a function of pH and time at 70 C. Geochim. Cosmochim. Acta 53, 1493-1501.

    Google Scholar 

  • K öhler S. J., Dufaud F., and Oelkers E. H. (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50[deg]C. Geochim. Cosmochim. Acta 67, 3583-3594.

    Google Scholar 

  • Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, x + 811 pp.

    Google Scholar 

  • Lerman A. (1979) Geochemical Processes - Water and Sediment Environments. Wiley, New York, viii + 481 pp.

    Google Scholar 

  • Lerman A. (1988) Weathering rates and major transport processes - an introduction. In Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman and M. Meybeck). Kluwer, Dordrecht and Boston, pp. 1-10.

    Google Scholar 

  • Lerman A. (1994) Surficial weathering fluxes and their geochemical controls. In Material Fluxes on the Surface of the Earth (eds. W. W. Hay and others). Studies in Geophysics, National Research Council, National Academic Press, Washington, DC, pp. 28-45.

    Google Scholar 

  • Lerman A. and Mackenzie F. T. (2005) CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquatic Geochem. 11, 345-390. Erratum, ibid. 12, 389-390.

    Google Scholar 

  • Lerman A. and Wu L. (2006) CO2 and sulfuric acid controls of weathering and river water composition. J. Geochem. Exploration 88, 427-430.

    Google Scholar 

  • Lerman A., Mackenzie F. T., and Garrels R. M. (1975) Modeling of geochemical cycles: phosphorus as an example. Geol. Soc. Am. Mem. 142, 205-218.

    Google Scholar 

  • Lerman A., Wu L., and Mackenzie F. T. (2006) Carbon dioxide weathering flux since the last glacial maximum to the present, its control of river water composition, and its role in the global carbon cycle. Eos Trans. Am. Geophys. Un. 87(52), Fall Meet. Suppl., Abs. B43B-0266.

    Google Scholar 

  • Lerman A., Wu L., and Mackenzie F. T. (2007) CO2 and H2 SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar. Chem. 106, 326-350.

    Google Scholar 

  • Li Y.-H. (2000) A Compendium of Geochemistry. Princeton University Press, Princeton, NJ, xiv + 475 pp.

    Google Scholar 

  • Lin F.-C. and Clemency C. V. (1981) The dissolution kinetics of brucite, antigorite, talc and phlogopite at room temperature and pressure. Am. Mineral. 66, 801-806.

    Google Scholar 

  • Linsey R. K. (1964) Hydrology. Encycl. Brit., 1964 edition, 11, 959-961.

    Google Scholar 

  • Livingstone D. A. (1963) Chemical composition of rivers and lakes. U. S. Geol. Surv. Prof. Pap. 440G, 64 pp.

    Google Scholar 

  • Lotka A. J. (1925) Elements of Physical Biology. Williams & Wilkins, Baltimore, MD, published as

    Google Scholar 

  • Lotka A. J. (1956) Elements of Mathematical Biology. Dover, New York, xxx + 465 pp.

    Google Scholar 

  • Ludwig W., Amiotte-Suchet P., and Probst J.-L. (1999) Enhanced chemical weathering of rocks during the last glacial maximum; a sink for atmospheric CO2 ? Chem. Geol. 159(1-4), 147-161.

    Google Scholar 

  • L üttge A., Winkler U., and Lasaga A. C. (2003) Interferometric study of the dolomite dissolution; a new conceptual model for mineral dissolution. Geochim. Cosmochim. Acta 67, 1099-1116.

    Google Scholar 

  • Lyell C. (1830) Principles of Geology, Vol. 1. John Murray, London, xvi + 511 pp. Facsimile of 1st edition. University Chicago Press, Chicago, IL, 1990.

    Google Scholar 

  • Lyell C. (1872) Principles of Geology, 11th edition, Vol. 2. D. Appleton & Co., New York, xx + 652 pp.

    Google Scholar 

  • Lyell C. (1875) Principles of Geology, 12th edition, Vol. 2. John Murray, London, xx + 652 pp.

    Google Scholar 

  • Mackenzie F. T. (1992) Chemical mass balance between rivers and oceans. Encycl. Earth Sys. Science. Academic Press, New York, 1, 431-445.

    Google Scholar 

  • Mackenzie F. T. and Garrels R. M. (1966) Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507-525.

    Google Scholar 

  • Mackenzie F. T., Ver L. M., Sabine C., Lane M., and Lerman A. (1993) C, N, P, S global biogeochemical cycles and modeling of global change. In Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou). NATO ASI Series. Series I: Global Environmental Change, Vol. 4. Springer-Verlag, Berlin, pp. 1-61.

    Google Scholar 

  • Mackenzie F. T., Ver L. M., and Lerman A. (2002) Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13-32.

    Google Scholar 

  • Mackenzie F. T., Lerman A., and Andersson A. J. (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11-32.

    Google Scholar 

  • Mason B. H. and Moore C. B. (1982) Principles of Geochemistry, 4th edition. Wiley, New York, vi + 344 pp.

    Google Scholar 

  • Meadows D. H., Meadows D. L., Randers J., and Behrens III, W. W. (1972) The Limits to Growth. Universe Books, New York.

    Google Scholar 

  • Metz V., Amram K., and Ganor J. (2005) Stoichiometry of smectite dissolution reaction. Geochim. Cosmochim. Acta 69, 1755-1772.

    Google Scholar 

  • Meybeck M. (1979) Concentrations des eaux fluviales en él éments majeurs et ap- ports en solution aux oc éans. Rev. G éol. Dyn. G éogr. Phys. 21(3), 215-246.

    Google Scholar 

  • Meybeck M. (1984) Les fleuves et le cycle g éochimique des él éments. Th èse de Doctorat d’Etat ès Sciences Naturelles, No 84-35. Universit é Pierre et Marie Curie, Paris.

    Google Scholar 

  • Meybeck M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287, 401-428.

    Google Scholar 

  • Meybeck M. (2003) Global occurrence of major elements in rivers. In Treatise on Geochemistry, Vol. 5 (ed. J. I. Drever), Elsevier, Amsterdam, pp. 207-223.

    Google Scholar 

  • Meybeck M. and Ragu A. (1995) Water quality of world river basins. UNEP GEMS Collaborating Centre for Fresh Water Quality Monitoring and Assessment, United Nations Environment Programme, Nairobi, Kenya, 40 pp.

    Google Scholar 

  • Meyer B. S. (1964) Plant physiology. Encycl. Brit., 1964 edition, 18, 16-31.

    Google Scholar 

  • Miller A. J., Schuur E. A. G., and Chadwick O. A. (2001) Redox control of phos- phorus pools in Hawaiian montane forest soils. Geoderma 102, 219-237.

    Google Scholar 

  • Milliman J. D. (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem. Cycles 7, 927-957.

    Google Scholar 

  • Milliman J. D. and Meade R. H. (1983) World-wide delivery of river sediment to the oceans. J. Geol. 91, 1-21.

    Google Scholar 

  • Milliman J. D. and Syvitski J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geol. 100, 525-544.

    Google Scholar 

  • Millot R., Gaillardet J., Dupr é B., and All ègre C. J. (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci. Lett. 196, 83-98.

    Google Scholar 

  • Millot R., Gaillardet J., Dupr é B., and All ègre C. J. (2003) Northern latitude chemical weathering rates: clues from the Mackenzie river basin, Canada. Geochim. Cosmochim. Acta 67, 1305-1329.

    Google Scholar 

  • Mogollon J. L., Perez D. A., Lo Monaco S., Ganor J., and Lasaga A. C. (1994) The effect of pH, HClO4 , HNO3 and ΔGr on the dissolution rate of natural gibbsite using column experiments. Mineral. Mag. 58A, 619-620.

    Google Scholar 

  • Mohr F., 1875. Geschichte der Erde, 2. Aufl. Verlag Max Cohen & Sohn, Bonn, xx + 544 pp.

    Google Scholar 

  • Mook W. G. and Tan F. C. (1991) Stable carbon isotopes in rivers and estuaries. In Biogeochemistry of Major World Rivers (eds. E. T. Degens, S. Kempe and J. E. Richey). SCOPE 42 (Scientific Committee On Problems of the Environment), Wiley, Chichester, Chapter 11.

    Google Scholar 

  • Mook W. G., Bommerson J. C., and Staverman W. H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169-176.

    Google Scholar 

  • Morse J. W. and Arvidson R. S. (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51-84.

    Google Scholar 

  • Morse J. W. and Mackenzie F. T. (1990) Geochemistry of Sedimentary Carbonates. Elsevier, New York, xvi + 707 pp.

    Google Scholar 

  • Mortatti J. and Probst J.-L. (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem. Geol. 197, 177-196.

    Google Scholar 

  • Mottl M. J. (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In Energy and Mass Transfer in Marine Hydrothermal Systems (eds. P. E. Halbach, V. Tunnicliffe and J. R. Hein). Dahlem University Press, Berlin, pp. 271-286.

    Google Scholar 

  • Munhoven G. (2002) Glacial-interglacial changes of continental weathering; estimates of the related CO2 and HCO3 − flux variations and their uncertainties. Global Planet. Change 33, 155-176.

    Google Scholar 

  • Munk W. H. (1966) Abyssal recipes. Deep Sea Res. 13, 707-730.

    Google Scholar 

  • Nakićenović N. and others (2000) Emissions Scenarios, a Special Report of Working Group III of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 599 pp.

    Google Scholar 

  • Nill D. (1997) Valuation of erosion-determining-factors and their quantitative influence on soil loss in tropical Africa. In Soils and environment: soil processes from mineral to landscape scale (eds. K. Auerswald, H. Stanjek and J. M. Bigham). Adv. Geoecol. 30, 23-38.

    Google Scholar 

  • Oliver L., Harris N., Bickle M., Chapman H., Dise N., and Horstwood M. (2003) Silicate weathering rates decoupled from the 87 Sr/86 Sr ratio of the dissolved load during Himalayan erosion. Chem. Geol. 201, 119-139.

    Google Scholar 

  • Oliver M. K. (2002) What is the chemical composition of lake Malawi water? How does it compare with lakes Victoria and Tanganyika? http://malawicichlids.com/mw01011.htm.

  • Blick Jr. D. J., Linthurst R. A., DeHaan M. D., and Omernik J. M. (1986) Characteristics of Lakes in the Eastern United States, Vol. II: Lakes Sampled and Descriptive Statistics for Physical and Chemical Variables. U. S. Environmental Protection Agency, Washington, DC, EPA/600/4-86/007b.

    Google Scholar 

  • Oxburgh R., Drever J. I., and Sun Y.-T. (1994) Mechanism of plagioclase dissolution in acid solution at 25 C. Geochim. Cosmochim. Acta 58, 661-669.

    Google Scholar 

  • Petit J.-R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Devis M., Delaygue G., Delmotte G. M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pepin L., Ritz C., Saltzman E., and Stievenard M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.

    Google Scholar 

  • Pettijohn F. J. (1957) Sedimentary Rocks, 2nd edition. Harper, New York, xvi + 718 pp.

    Google Scholar 

  • Plummer L. N., Wigley T. M. L., and Parkhurst D. L. (1978) The kinetics of calcite dissolution in CO2 -water systems at 5 and 60 C and 0.0 to 1.0 atm CO2 . Am. J. Sci. 278, 179-216.

    Google Scholar 

  • Post W., Emmanuel W., Zinke P., and Stangenberger A. (1982) Soil carbon pools and world life zones. Nature 298, 156-159.

    Google Scholar 

  • Powers L. A., Johnson T. C., Werne J. P., Casta ñeda I. S., Ellen C. Hopmans E. C., Sinninghe Damst é J. S., and Schouten S. (2005) Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706, doi:10.1029/2004GL022014.

    Google Scholar 

  • Probst J.-L. and Brunet F. (2005) δ13 C tracing of dissolved inorganic carbon sources in major world rivers. Abs. 15th Ann. Goldschmidt Conf. Geochim. Cosmochim. Acta 69 (Suppl. 1), A726.

    Google Scholar 

  • Prospero J. M. (1981) Eolian transport to the world ocean. In The Sea: The Oceanic Lithosphere, Vol. 7 (ed. C. Emiliani). Wiley, New York, pp. 801-874.

    Google Scholar 

  • Rankama K. and Sahama Th. G. (1950) Geochemistry. University Chicago Press, Chicago, IL, xvi + 912 pp.

    Google Scholar 

  • Raymond P. A. and Cole J. J. (2003) Increase in the export of alkalinity from North America’s largest river. Science 301, 88-91.

    Google Scholar 

  • Rea D. K., Hovan S. A., and Janecek T. R. (1994) Late quaternary flux of eolian dust to the pelagic ocean. In Geomaterial Fluxes on the Surface of the Earth (eds. W. W. Hay and others). Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, pp. 116-123.

    Google Scholar 

  • Richey J. E. (1983) The phosphorus cycle. In The Major Biogeochemical Cycles and their Interactions (eds. B. Bolin and R. B. Cook). Wiley, Chichester, pp. 51-56.

    Google Scholar 

  • Rightmire C. T. (1978) Seasonal variation in pCO2 and 13 C content of soil atmosphere. Water Resour. Res. 14, 691-692.

    Google Scholar 

  • Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44, 1683-1700.

    Google Scholar 

  • Robie R. A., Hemingway B. S., and Fisher J. R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1452, 1-456.

    Google Scholar 

  • Rufe E. and Hochella Jr. M. F. (1999) Quantitative assessment of reactive surface area of phlogopite during acid dissolution. Science 285, 874-876.

    Google Scholar 

  • Rudnick R. L. and Gao S. (2003) Composition of the continental crust. In Treatise on Geochemistry, Vol. 3 (ed. J. I. Drever). Elsevier, Amsterdam, pp. 1-64.

    Google Scholar 

  • Ruttenberg K. C. (2004) The global phosphorus cycle. In Treatise on Geochemistry, Vol. 8 (ed. W. Schlesinger). Elsevier, Amsterdam, pp. 585-643.

    Google Scholar 

  • Ruttenberg K. C. and Canfield D. E. (1994) Chemical distribution of phosphorus in suspended particulate matter from twelve North American rivers: evidence for bioavailability of particulate-P. EOS, Trans. Am. Geophys. Un. 69, 1235.

    Google Scholar 

  • Schnoor J. L. (1990) Kinetics of chemical weathering; a comparison of laboratory and field weathering rates. In Aquatic Chemical Kinetics (ed. W. Stumm), Wiley, New York, pp. 475-504.

    Google Scholar 

  • Scholl D. W. and von Huene R. (2004) Exploring the implications for continental basement tectonics if estimated rates of crustal removal (recycling) at Cenozoic subduction zones are applied to Phanerozoic and Precambrian convergent ocean margins. Abs. 17th International Basement Tectonics Association Conference 2004: 4-D Framework of the Continental Crust - Integrating Crustal Processes Through Time. Oak Ridge, Tennessee, pp. 33-36. http://geoweb.gg.utk.edu/ibta04crust/meeting.html.

  • Schott J., Berner R. A., and Sjöberg E. L. (1981) Mechanism of pyroxene and amphibole weathering: I, Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta 45, 2123-2135.

    Google Scholar 

  • Shaw D. B. and Weaver C. E. (1965) The mineralogical composition of shales. J. Sed. Petrology 35(1), 213-222.

    Google Scholar 

  • Shiklomanov I. A. (1993) World fresh water resources. In Water in Crisis; A Guide to the World’s Fresh Water Resources (ed. P. H. Gleick). Oxford University Press, New York, pp. 13-24.

    Google Scholar 

  • Shiraki R., Rock P. A., and Casey W. H. (2000) Dissolution kinetics of calcite in 0.1M NaCl solution at room temperature: an atomic force microscopic (AFM) study. Aquatic Geochem. 6, 87-108.

    Google Scholar 

  • Siegel D. I. and Pfannkuch H. O. (1984) Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochim. Cosmochim. Acta 48, 197-201.

    Google Scholar 

  • Siegenthaler U. and Oeschger H. (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B, 140-154.

    Google Scholar 

  • Sj öberg E. L. (1976) A fundamental equation for calcite dissolution kinetics. Geochim. Cosmochim. Acta 40, 441-447.

    Google Scholar 

  • Sj öberg E. L. and Rickard D. T. (1984) Temperature-dependence of calcite dissolution kinetics between 1 C and 62 C at pH 2.7 to 8.4 in aqueous solutions. Geochim. Cosmochim. Acta 48, 485-493.

    Google Scholar 

  • Smith, S. V., Renwick, W. H., Buddemeier, R. W., and Crossland C. J. (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem. Cycles 15(3), 697-707.

    Google Scholar 

  • Stallard R. F. (1988) Weathering and erosion in the humid tropics. In Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman and M. Meybeck). Kluwer, Dordrecht, pp. 225-246.

    Google Scholar 

  • Sternbeck J. and Sohlenius G. (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic sea. Chem. Geol. 135, 55-73.

    Google Scholar 

  • Stumm W. and Morgan J. J. (1981) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edition. Wiley, New York, xvi + 780 pp.

    Google Scholar 

  • Sutheimer S. H., Maurice P. A., and Zhou Q. (1999) Dissolution of well and poorly crystallized kaolinites; Al speciation and effects of surface characteristics. Am. Mineral. 84, 620-628.

    Google Scholar 

  • Sverdrup H. U. (1990) The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press, Lund, Sweden, 245 pp.

    Google Scholar 

  • Swoboda-Colberg N. G. and Drever J. I. (1993) Mineral dissolution rates in plotscale field and laboratory experiments. Chem. Geol. 105, 51-69.

    Google Scholar 

  • Tang R., Henneman Z. J., and Nancollas G. H. (2003) Constant composition kinetics study of carbonated apatite dissolution. J. Crystal Growth 249, 614-624.

    Google Scholar 

  • Tardy Y., Bustillo V., and Boeglin J.-L. (2004) Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the Niger river, Africa. Appl. Geochem. 19, 469-518.

    Google Scholar 

  • UCAR/OIES (1991) Changes in time in the temperature of the Earth. University Center for Atmospheric Research, Office for Interdisciplinary Earth Studies, Boulder, Colo. EarthQuest 5(1). http://gcrio.org/CONSEQUENCES/winter96/article1-fig2.html.

  • Urey H. C. (1952) The Planets: Their Origin and Development. Yale University Press, New Haven, CT, xvii + 245 pp.

    Google Scholar 

  • Valsami-Jones E., Ragnarsdottír K. V., Putnis A., Bosbach D., Kemp A. J., and Cressey G. (1998) The dissolution of apatite in the presence of aqueous metal cations at pH 2-7. Chem. Geol. 151, 215-233.

    Google Scholar 

  • Van Cappellen P., Gaillardet, J., and Rabouille C. (1993) Biogeochemical transformations in sediments: kinetic models of early diagenesis. In Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou). NATO ASI Series. Series I: Global Environmental Change 4, 401-445, Springer-Verlag, Berlin.

    Google Scholar 

  • Veizer J. (1988) The evolving exogenic cycle. In Chemical Cycles in the Evolution of the Earth (eds. C. B. Gregor, R. M. Garrels, F. T. Mackenzie, and J. B. Maynard). Wiley, New York, pp. 175-261.

    Google Scholar 

  • Velbel M. A. (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge. Am. J. Sci. 285, 904-930.

    Google Scholar 

  • Ver L. M. (1998) Global kinetic models of the coupled C, N, P, and S biogeochemical cycles: implications for global environmental change. Ph. D. Thesis, University Hawaii, Honolulu, HI, xxi + 681 pp.

    Google Scholar 

  • Ver L. M., Mackenzie F. T., and Lerman A. (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: past, present and future. Am. J. Sci. 299, 762-801.

    Google Scholar 

  • Vidic N. (1998) Soil-age relationships and correlations: comparison of chronosequences in the Ljubljana basin, Slovenia and USA. Catena 34, 113-129.

    Google Scholar 

  • von Huene R. and Scholl D. W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279-316.

    Google Scholar 

  • Votintsev K. K. (1993) On the natural conditions of lake Baikal in connection with the development of its water quality standard. Water Resour. 20, 595-604.

    Google Scholar 

  • Walker J. C. G. (1991) Numerical Adventures with Geochemical Cycles. Oxford University Press, New York.

    Google Scholar 

  • Walling E. (1983) The sediment delivery problem. J. Hydrol. 65, 209-237.

    Google Scholar 

  • Wedepohl H. K. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217-1232.

    Google Scholar 

  • Weiler R. R. and Chawla V. K. (1969) Dissolved mineral quality of great lakes waters. Proc. 12th Conf. Great Lakes Res., pp. 801-818, International Association of Great Lakes Research, Ann Arbor, MI.

    Google Scholar 

  • Weisstein E. W. (2005) Sphere Packing. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/SpherePacking.html.

  • Wahlen M. (2002) Carbon-Isotopic Composition of Atmospheric CO2 Since the Last Glacial Maximum. National Snow and Ice Data Center, digital media, Boulder, CO, http://nsidc.org/data/docs/agdc/nsidc0108 wahlen/index.html.

  • White A. F. (1995) Chemical weathering rates in soils. In Chemical Weathering Rates of Silicate Minerals (eds. A. F. White and S. L. Brantley). Mineralogical Society of America, Washington, DC, Rev. Mineralogy 31, 407-458.

    Google Scholar 

  • White A. F. and Brantley S. L. (eds.) (1995) Chemical Weathering Rates of Silicate Minerals. Mineralogical Society of America., Washington, DC, Rev. Mineralogy 31,1-584.

    Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202,479-506.

    Google Scholar 

  • White A. F., Blum A. E., Schulz M. S., Bullen T. D., Harden J. W., and Peterson M. L. (1996) Chemical weathering of a soil chronosequence on granitic alluvium: 1. Reaction rates based on changes in soil mineralogy. Geochim. Cosmochim. Acta 60,2533-2550.

    Google Scholar 

  • White A. F., Bullen T. D., Schulz M. S., Blum A. E., Huntington T. G., and Peters N. E. (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim. Cosmochim. Acta 65, 847-869.

    Google Scholar 

  • Whitmarsh J. and Govindjee (1995) The photosynthetic process. In Concepts in Photobiology: Photosynthesis and Photomorphogenesis (eds. G. S. Singhal, G. Renger, S. K. Soppory, K.-D. Irrgang and Govindjee). Kluwer, Dordrecht, pp. 11-51.

    Google Scholar 

  • Wieland E. and Stumm W. (1992) Dissolution kinetics of kaolinite in acidic aqueous solutions at 25 C. Geochim. Cosmochim. Acta 56, 3357-3363.

    Google Scholar 

  • Wischmeier W. H. and Smith D. D. (1978) Predicting rainfall erosion losses - a guide to conservation planning. U. S. Department of Agriculture, Agriculture Handbook no. 537, 58 pp.

    Google Scholar 

  • Woodruff N. P. and Siddoway F. H. (1965) A wind erosion equation. Soil Sci. Soc. Am. Proc. 29, 602-608.

    Article  Google Scholar 

  • Wu L. and Huh Y. (2007) Dissolved reactive phosphorus in large rivers of East Asia. Biogeochemistry 85, 263-288.

    Google Scholar 

  • Yang C., Telmer K., and Veizer J. (1996) Chemical dynamics of the “St. Lawrence” riverine system; δDH2 O , δ18 OH2 O , δ13 CDIC , δ34 Ssulfate , and dissolved 87 Sr/86 Sr. Geochim. Cosmochim. Acta 60(5), 851-866.

    Google Scholar 

  • Yang D. W., Kanae S., Oki T., Koike T., and Musiake K. (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 17(4), 2913-2928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lerman, A., Wu, L. (2008). Kinetics of Global Geochemical Cycles. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_13

Download citation

Publish with us

Policies and ethics