Skip to main content

Nanofabrication by Scanning Probes

  • Chapter
  • First Online:
Nanofabrication
  • 3189 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringger, M., et al., Nanometer lithography with the scanning tunnelling microscope. Appl. Phys. Lett., 1985. 46(9): p. 832.

    Article  CAS  Google Scholar 

  2. Binnig, G. and H. Rohrer, Scanning tunnelling microscopy. Helv. Phys. Acta, 1982. 55(6): pp. 26–735

    Google Scholar 

  3. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys. Rev. Lett., 1986. 56(9): p. 930.

    Article  Google Scholar 

  4. West, P. and A. Ross, An Introduction to Atomic Force Microscopy Modes. 2006, Pacific Nanotechnology, Inc.

    Google Scholar 

  5. Pohl, D.W., W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett., 1984. 44(7): pp. 651–653

    Article  Google Scholar 

  6. Folwer, R.H. and L.W. Nordheim, Proc. R. Soc. London, 1928. A119: p. 173.

    Google Scholar 

  7. Cui, Z. and L. Tong, Optimum geometry and space-charge effects in vacuum microelectronic devices. IEEE Trans. Electron Devices, 1993. 40(2): p. 448.

    Article  Google Scholar 

  8. Soh, H.T., K.W. Guarini, and C.F. Quate, Resist exposure using field-emitted electrons, in Scanning Probe Lithography. 2001, Kluwer Academic

    Google Scholar 

  9. McCord, M.A. and R.F.W. Pease, Lift-off metallization using poly(methyl methacrylate) exposed with a scanning tunnelling microscope. J. Vac. Sci. Technol., 1988. B6(1): p. 293.

    Google Scholar 

  10. Wilder, K., et al., Electron beam and scanning probe lithography: A comparison. J. Vac. Sci. Technol., 1998. B16(5): p. 3864.

    Google Scholar 

  11. Mayer, T.M., D.P. Adams, and B.M. Marder, Field emission characteristics of the scanning tunnelling microscope for nanolithography. J. Vac. Sci. Technol., 1996. B14(4): p. 2438.

    Google Scholar 

  12. Betzig, E., et al., Near-field scanning optical microscopy (NSOM) – development and biophysical applications. Biophys. J. 1996. 49(1): pp. 269–279.

    Article  Google Scholar 

  13. Froehlich, F.F., T.D. Milster, and R. Uber, High-resolution optical lithography with a near-field scanning subwavelength aperture. Proc. SPIE, 1993. 1751: pp. 312–320.

    Article  CAS  Google Scholar 

  14. Leggett, G.J., Scanning near-field photolithography – surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev., 2006. 35: pp. 1150–1161.

    Article  CAS  Google Scholar 

  15. Smolyaninov, I., D.L. Mazzoni, and C.C. Davis, Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process. Appl. Phys. Lett., 1995. 67(26): p. 3859.

    Article  CAS  Google Scholar 

  16. Riehn, R., et al., Near-field optical lithography of a conjugated polymer. Appl. Phys. Lett., 2003. 82: p. 526.

    Article  CAS  Google Scholar 

  17. Novotny, L., R.X. Bian, and X.S. Xie, Theory of nanometric optical tweezers. Phys. Rev. Lett., 1997. 79: pp. 645–648.

    Article  CAS  Google Scholar 

  18. Royer, P., et al., Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip. Phil. Trans. R. Soc. Lond., 2004. A362: pp. 821–842.

    Google Scholar 

  19. Sun, S. and G.J. Leggett, Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett., 2004. 4(8): pp. 1381–1384.

    Article  CAS  Google Scholar 

  20. Kramer, S., R.R. Fuierer, and C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chem. Rev., 2003. 103(11): pp. 4367–4418.

    Article  Google Scholar 

  21. Day, H.C. and D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett., 1993. 62(21): p. 2691.

    Article  CAS  Google Scholar 

  22. Garcia, R., R.V. Martinez, and J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev., 2006. 35: pp. 29–38.

    Article  CAS  Google Scholar 

  23. Avouris, P., T. Hertel, and R. Martel, Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Appl. Phys. Lett., 1997. 71(2): p. 285.

    Article  CAS  Google Scholar 

  24. Stievenard, D., P.A. Fontaine, and E. Dubois, Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation. Appl. Phys. Lett., 1997. 70(24): p. 3272.

    Article  CAS  Google Scholar 

  25. Dagata, J.A., et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett., 1990. 56: p. 2001.

    Article  CAS  Google Scholar 

  26. Fontaine, P.A., E. Dubois, and D. Stievenard Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon. J. Appl. Phys., 1998. 84(4): p. 1776.

    Article  CAS  Google Scholar 

  27. Snow, E.S., et al., A metal/oxide tunneling transistor. Appl. Phys. Lett., 1998. 72: p. 3071.

    Article  CAS  Google Scholar 

  28. Muller, E.W. and T.T. Tsong, Field Ion Microscopy. Principle and Applications. 1969, Elsevier.

    Google Scholar 

  29. Mamin, H.J., et al., Gold deposition from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 1991. B9(2): p. 1398.

    Google Scholar 

  30. T.T. Tsong, Field ion image formation. Surf. Sci., 1978. 70: pp. 211–233.

    Article  CAS  Google Scholar 

  31. Chang, C.S., W.B. Su, and T.T. Tsong, Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. Phys. Rev. Lett., 1994. 72(4): p. 574.

    Article  CAS  Google Scholar 

  32. Houel, A., et al., Direct patterning of nanostructures by field-induced deposition from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 2002. B20(6): p. 2337.

    Google Scholar 

  33. Cui, Z. and L. Tong, A new approach to simulating liquid metal ion sources. J. Vac. Sci. Technol., 1988. B6(6): p. 2104.

    Google Scholar 

  34. McCord, M.A. and D.D. Awschalom, Direct deposition of magnetic dots using a scanning tunneling microscope. Appl. Phys. Lett., 1990. 57(20): p. 2153.

    Article  CAS  Google Scholar 

  35. Koinuma, M. and K. Uosaki, AFM tip induced selective electrochemical etching and metal deposition on p-GaAs(100) surface. Surf. Sci., 1996. 357–358: pp. 565–570.

    Article  Google Scholar 

  36. Piner, R.D., et al., Dip-pen nanolithography. Science, 1999. 283: pp. 661–663.

    Article  CAS  Google Scholar 

  37. Xia, Y. and G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed., 1998. 37: p. 550.

    Article  CAS  Google Scholar 

  38. Mirkin's group. [cited; Available from: http://chemgroups.northwestern.edu/mirkingroup/].

  39. Ginger, D.S., H. Zhang, and C.A. Mirkin, The evolution of Dip-pen nanolithography. Angew. Chem. Int. Ed., 2004. 43: pp. 30–45.

    Article  Google Scholar 

  40. Nano Ink Corp. [cited; Available from: http://www.nanoink.net/].

  41. Nagahara, L.A., T. Thundat, and S.M. Lindsay, Nanolithography on semiconductor surfaces under an etching solution. Appl. Phys. Lett., 1990. 57(3): p. 270.

    Article  CAS  Google Scholar 

  42. Ye, J.H., et al., Local modification of n-Si(100) surface in aqueous solutions under anodic and cathodic potential polarization with an in situ scanning tunneling microscope. J. Vac. Sci. Technol., 1995. B13: p. 1423.

    Google Scholar 

  43. Thomson, R.E., J. Moreland, and A. Roshko, Surface modification of YBa2Cu3O7-delta thin films using the scanning tunneling microscope: Five methods. Nanotechnology, 1994. 5: p. 57.

    Article  CAS  Google Scholar 

  44. Kaneshiro, C. and T. Okumura, Nanoscale etching of GaAs surfaces in electrolytic solutions by hole injection from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 1997. B15: p. 1595.

    Google Scholar 

  45. Shedd, G.M. and P.E. Russell, The scanning tunneling microscope as a tool for nanofabrication. Nanotechnology, 1990. 1: pp. 67–80.

    Article  Google Scholar 

  46. Li, Y.Z., et al., Writing nanometer-scale symbols in gold using the scanning tunneling microscope. Appl. Phys. Lett., 1989. 54: p. 1424.

    Article  Google Scholar 

  47. Schneir J, et al., Creating and observing surface features with a scanning tunneling microscope. Proc. SPIE, 1987. 897: p. 16.

    Google Scholar 

  48. Kondo, S., et al., Surface modification mechanism of materials with scanning tunneling microscope. J. Appl. Phys., 1995. 78: p. 155.

    Article  CAS  Google Scholar 

  49. Mamin, H.J. and D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett., 1992. 61: p. 1003.

    Article  CAS  Google Scholar 

  50. Basu, A.S., S. McNamara, and Y.B. Gianchandani, Scanning thermal lithography maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. J. Vac. Sci. Technol., 2004. B22(6): p. 3217.

    Google Scholar 

  51. Vettiger, P., et al., The millipede – more than one thousand tips for future AFM data storage. IBM J. Res. Dev., 2000. 44(323).

    Google Scholar 

  52. Magno, R. and B.R. Bennett, Nanostructure patterns written in III–V semiconductors by an atomic force microscope. Appl. Phys. Lett., 1997. 70: p. 1855.

    Article  CAS  Google Scholar 

  53. Filho, H.D.F., et al., Metal layer mask patterning by force microscopy lithography. Mater. Sci. Eng., 2004. B112: p. 194.

    Article  Google Scholar 

  54. Muller, M., et al., Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching. Surf. Interface Anal., 2004. 36: p. 189.

    Article  Google Scholar 

  55. Hu, S., et al., Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J. Vac. Sci. Technol., 1998. B16: p. 2822.

    Google Scholar 

  56. Chen, Y., J. Hsu, and H. Lin, Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology, 2005. 16: pp. 1112–1115.

    Article  CAS  Google Scholar 

  57. Jones, A.G., et al., Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer films. Appl. Phys. Lett., 2006. 89: p. 013119.

    Article  Google Scholar 

  58. Zhou, D., et al., Use of atomic force microscopy for making addresses in DNA coatings. Langmuir, 2002. 18: p. 8278.

    Article  CAS  Google Scholar 

  59. Xu, S. and G. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir, 1997. 13: pp. 127–129.

    Article  Google Scholar 

  60. Quate, C.F., Scanning probes as a lithography tool for nanostructures. Surf. Sci. 1997. 386: pp. 259–264.

    Article  CAS  Google Scholar 

  61. Barrett, R.C. and C.F. Quate, High speed, large-scale imaging with the atomic force microscope. J. Vac. Sci. Technol., 1991. B9: p. 302.

    Google Scholar 

  62. Manalis, S.R., S.C. Minne, and C.F. Quate, Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Appl. Phys. Lett., 1996. 68(6): p. 871.

    Article  CAS  Google Scholar 

  63. Marrian, C.R.K., E.A. Dobisz, and J.A. Dagata, Electron-beam lithography with the scanning tunnelling microscope. J. Vac. Sci. Technol., 1992. B10(6): p. 2877.

    Google Scholar 

  64. Park, S.W., et al., Nanometer scale lithography at high scanning speeds with the atomic force microscope using spin on glass. Appl. Phys. Lett., 1995. 67(16): p. 2415.

    Article  CAS  Google Scholar 

  65. Wilder, K., et al., Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes. Rev. Sci. Instrum., 1999. 70(6): p. 2822.

    Article  CAS  Google Scholar 

  66. Despont, M., et al., VLSI-NEMS chip for parallel AFM data storage. Sens. Actuators, 2000. 80: pp. 100–107.

    Article  Google Scholar 

  67. Salaita, K., et al., Massively parallel Dip–pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed., 2006. 45: pp. 7220–7223.

    Article  CAS  Google Scholar 

  68. Tseng, A.A., A. Notargiacomo, and T.P. Chen, Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Technol., 2005. B23(3): p. 877.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Cui .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cui, Z. (2008). Nanofabrication by Scanning Probes. In: Nanofabrication. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75577-9_4

Download citation

Publish with us

Policies and ethics