Skip to main content

Present State of Electron Backscatter Diffraction and Prospective Developments

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystals. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade (Schwartz et al. 2000) due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complementary information about the microstructure on a submicron scale. From the same specimen area, surface structure and morphology of the microstructure are characterized in great detail by the relief and orientation contrast in secondary and backscatter electron images, element distributions are accessed by energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), or cathodoluminescence analysis, and the orientations of single grains and phases can now be determined, as a complement, by EBSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BL, Wright SI, Kunze K (1993) Orientation imaging: The emergence of a new microscopy. Met Trans 24A: 819–831

    CAS  Google Scholar 

  • Alam MN, Blackman M, Pashley DW (1954) High-angle Kikuchi patterns. Proc Roy Soc London A221:224–242

    ADS  Google Scholar 

  • Barrett CS (1979) Ion beam scattering applied to crystallography. Naturwissenschaften 57:287–295

    Article  ADS  Google Scholar 

  • Chadderton LT (1968) A correspondence principle for the channelling of fast charged particles. Phil Mag 8(18): 1017–1031

    Article  ADS  Google Scholar 

  • Day A (1993) Developments in the EBSP technique and their application to grain imaging. Ph. D. dissertation, University of Bristol, Bristol, England

    Google Scholar 

  • Deans SR (1983) The Radon transform and some of its applications. Wiley, New York

    MATH  Google Scholar 

  • Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Comm ACM 15:11–15

    Article  Google Scholar 

  • Field D (1997) Recent advances in the application of orientation imaging. Ultramicroscopy 67:1–9

    Article  CAS  Google Scholar 

  • Jarle Hjelen AS, N-7079 FlatÃ¥sen, Trondheim, Norway (2007) NORDIF ultra-fast EBSD detectors—the UF series. http://www.nordif.com

  • Hjelen J, Ørsund E, Hoel E, Runde P, Furu T, Nes E (1993) EBSP, progress in technique and applications. Textures Microstruct 20:29–40

    Article  Google Scholar 

  • Hough PVC (1962) Methods and means for recognizing complex patterns. US patent 3069654

    Google Scholar 

  • Krieger Lassen NC (1994) Automated determination of crystal orientations from electron backscattering patterns. Ph. D. thesis, Danmarks Tekniske Universitet, DK-2800 Lyngby

    Google Scholar 

  • Krieger Lassen N (1998) Automatic high-precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction pattern. J Microsc 190:375–391

    Article  Google Scholar 

  • Kunze K, Zaefferer S, Schwarzer R (1994) Orientierungsmapping mit dem Raster-Elektronenmikroskop. Beitr Elektronenmikroskop Direktabb Oberfl 27:169–176

    Google Scholar 

  • Michael JR, Goehner RP (1994) Advances in backscattered-electron Kikuchi patterns for crystallographic phase identification. In: Bailey GW, Garratt-Reed AJ (eds), Proceedings of the 52nd annual meeting of the microscopy society of America, San Francisco Press, pp 596–597

    Google Scholar 

  • Morawiec A (1999) Reliability of automatic orientation determination from Kikuchi patterns. In: Szpunar JA (ed), Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:62–67

    Google Scholar 

  • Morgan J, Notte J, Hill R, Ward B (2006) An introduction to the helium ion microscope. Microsc Today 14(4):24–31

    CAS  Google Scholar 

  • Nishikawa S, Kikuchi S (1928) The diffraction of cathode rays by calcite. Proc Imperial Acad (Japan) 4:475–477

    Google Scholar 

  • Radon J (1917) Ãœber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber Verh Sächs Akad Wiss Leipzig Math-Naturw Klasse 69:262–267

    Google Scholar 

  • Reimer L (1985) Scanning electron microscopy. Springer Verlag, Berlin

    Google Scholar 

  • Schwartz AJ, Kumar M, Adams BL (2000) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Schwarzer R (1989) Die Aufnahme von Reflexions-Kikuchi-Diagrammen im REM mit einer peltiergekühlten, integrierenden CCD-Videokamera. Beitr Elektronenmikr Direktabb Oberfl 22:279–282

    Google Scholar 

  • Schwarzer RA (1994) Preparation of high-resistance or sensitive samples for grain orientation measurement with electron microscopes. Mater Sci Forum 157–162:201–206

    Article  Google Scholar 

  • Schwarzer RA (1997) Automated crystal lattice orientation mapping using a computer-controlled SEM. Micron 28: 249–265

    Article  CAS  Google Scholar 

  • Schwarzer RA, Sukkau J (1998) Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns. Mater Sci Forum 273–275:215–222

    Article  Google Scholar 

  • Schwarzer RA (1999) Advancements of ACOM and applications to orientation stereology. In: Szpunar JA (ed) Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:52–61

    Google Scholar 

  • Schwarzer RA, Sukkau J (2003) Automated evaluation of Kikuchi patterns by means of Radon and fast Fourier transformation, and verification by an artificial neural network. Adv Eng Mater 5:601–606

    Article  CAS  Google Scholar 

  • Schwarzer R (2007) Vorrichtung zur Kristallorientierungsmessung mittels Ionen-Blocking-Pattern und einer fokussierten Ionensonde. Patent pending

    Google Scholar 

  • Schwarzer RA (2008a) A fast ACOM/EBSD system. Arch Metall Mater 53:1–6

    Google Scholar 

  • Schwarzer RA (2008b) Spatial resolution in ACOM—What will come after EBSD. Microsc Today 16(1):34–37

    Google Scholar 

  • Scipioni L, Stern L, Notte J (2007) Applications of the helium ion microscope. Microsc Today 15(6):12–15

    CAS  Google Scholar 

  • Søfferud M, Hjelen J, Karlsen M, Breivik T, Krieger Lassen NC, Schwarzer R (2008) Development of an ultra-fast EBSD detector system. In: Luysberg M, Tillmann K, Weirich T (eds) Proceedings of the 14th European microscopy congress, EMC2008, Vol. 1: Instrumentation and methods. Springer-Verlag, Berlin, pp 623–624

    Google Scholar 

  • Toft P (1996) The Radon transform—Theory and implementation. Ph. D. thesis, Danmarks Tekniske Universitet, DK-2800 Lyngby. Free download from: http://petertoft.dk/PhD/

  • Tondare VN (2005) Quest for high brightness, monochromatic noble gas ion sources. J Vac Sci Technol A 23:1498–1508

    Article  CAS  ADS  Google Scholar 

  • Tulinov AF (1965) On an effect accompanying nuclear reactions in single crystals and its use in various physical investigations. Sov Phys-Doklady 10:463–465 (English translation of the original article of A.F. Tulinov in Doklady Akademii Nauk SSSR 162:546–548)

    ADS  Google Scholar 

  • Venables JA, Harland CJ (1973) Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Phil Mag 27:1193–1200

    Article  CAS  ADS  Google Scholar 

  • Venables JA, Bin-Jaya R (1977) Accurate microcrystallography using electron back-scattering patterns. Phil Mag 35: 1317–1328

    Article  CAS  ADS  Google Scholar 

  • Wendt U, Nolze G (2007) FIB milling and channeling. GIT Imaging Microsc 9(3):34–36

    Article  Google Scholar 

  • Winkelmann A, Trager-Cowan C, Sweeney F, Day A, Parbrook P (2007) Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107: 414–421

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann A (2008) Dynamical simulation of electron backscatter diffraction patterns. Chapter 2, this volume

    Google Scholar 

  • Wu CT, Adams BL, Bauer CL, Casasent D, Morawiec A, Ozdemir S, Talukder A (1999) Mapping the mesoscale interface structure in polycrystalline materials. Microsc Microanal 5(Suppl 2):260–261

    Google Scholar 

  • Yang W, Adams BL, De Graef M (1999) Adaptive orientation imaging microscopy. In: Szpunar JA (ed) Proceedings of the 12th international conference on textures of materials. NRC Research Press, Ottawa 1:192–197

    Google Scholar 

  • Zaefferer S, Schwarzer RA (1994) Automated measurement of single grain orientations in the TEM. Z Metallkd 85: 585–591

    CAS  Google Scholar 

Download references

Acknowledgments

The ion blocking pattern in Fig. 1.7 is a reprint from Tulinov (1965). Permission for reproduction is gratefully acknowledged to Prof. Dr. A.F. Tulinov, Lomonosov Moscow State University, and Uspekhi Fizicheskikh Nauk, Moscow. RS would like to thank Prof. Dr. U. Wendt, University of Magdeburg, Germany, for kindly providing the orientation contrast micrograph in Fig. 1.8. The work of MK and AJS was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Schwarzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwarzer, R.A., Field, D.P., Adams, B.L., Kumar, M., Schwartz, A.J. (2009). Present State of Electron Backscatter Diffraction and Prospective Developments. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_1

Download citation

Publish with us

Policies and ethics