Skip to main content

Dynamics of Social Complex Networks: Some Insights into Recent Research

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks

Social networks analysis (that is, the study of interactions among social actors from a structural viewpoint) has a long tradition covering several decades [1, 2, 3]. This sort of study has usually been performed over small social networks, and the limitation of size has conditioned the visibility of complexity [4, 5]. However, the situation has changed significantly in recent times due to basically two reasons. First, there is an increasing availability of larger social datasets (obtained in most cases from information and communication technologies). Secondly, a large number of physicists and other scholars from complexity science have started to take active interest in the field. New perspectives and tools have been provided by these ‘newcomers’, which in combination with the expertise and knowledge accumulated by ‘classical’ social network analysts, has formed the basis of a multidisciplinary field suitably termed the science of networks [6, 7].

This research has led to the formal definition of the complexity exhibited by social networks against the following simple ‘check list’ [5].

  1. 1.

    The network must consist of a large number of nodes showing substantial heterogeneity. Here we understand heterogeneity to mean diversity of degree.

  2. 2.

    Its structure has to present an ‘intricate architecture’, that is, a topology that cannot be expressed in terms of simple patterns (like ‘regular’ or ‘completely random’) but must include several degrees of freedom.

  3. 3.

    This topological complexity is translated into the global system behavior in the form of ‘emergent phenomena’, i.e. even simple local interaction rules lead to a performance of the whole system that is richer than the sum of local effects.

  4. 4.

    This influence of local feedbacks over the macroscopical behavior can be manifested, in particular, as nonlinearities in the operation of the processes that shape the network itself (i.e. sudden emergencies of determined structural features are observed when a certain external parameter exceeds a certain threshold value).

Regarding the fulfillment of this list of requirements by social networks, Vega-Redondo refers to the results of previous studies about social structure to confirm that social networks satisfy the first two. Following the same reasoning, we notice that the other two requirements (covering dynamic aspects) are repeatedly recognized in social phenomena, for instance, collective behavior and social mobilization [8, 9] (third point), or the emergence of hierarchical social structures from interactions at an individual level [10, 11] (fourth point).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver (BC Canada) (2004).

    Google Scholar 

  2. Scott, J.: Social Network Analysis: A Handbook. SAGE Publications, London (2000).

    Google Scholar 

  3. Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applications. Cambridge University Press, New York (1994).

    Google Scholar 

  4. Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution of an Internet dating community. Social Networks 26, 155–174 (2004).

    Article  Google Scholar 

  5. Vega-Redondo, F.: Complex Social Networks. Cambridge University Press, New York (2007).

    MATH  Google Scholar 

  6. Watts, D.J.: Six Degrees: The Science of a Connected Age. W. W. Norton & Company Inc., New York (2003).

    Google Scholar 

  7. Barabási, A.-L.: Linked: The New Science of Networks. Perseus Publishing, Cambridge (USA) (2002).

    Google Scholar 

  8. Coleman, J.: Foundations of Social Theory. Harvard University Press, Cambridge, MA (1990).

    Google Scholar 

  9. Gould, R.V.: Collective action and network structure. American Sociological Review 58 (2), 182–196 (1993).

    Article  Google Scholar 

  10. Gould, R.V.: The origins of status hierarchies: A formal theory and empirical test. American Journal of Sociology 107 (5), 114378 (2002).

    Article  Google Scholar 

  11. Epstein, J.M.: Generating classes without conquest. In: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton, NJ (2007).

    Google Scholar 

  12. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Reviews of Modern Physics (Accepted) 348 (2008).

    Google Scholar 

  13. Rogers, E.M.: Diffusion of Innovations (5th ed.). Free Press, New York (2003).

    Google Scholar 

  14. Valente, T.W.: Models and methods for innovation diffusion. In: Carrington, P., Scott, J., Wasserman, S. (ed) Models and Methods in Social Network Analysis. Cambridge University Press, New York (2005).

    Google Scholar 

  15. Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901 (2001).

    Article  Google Scholar 

  16. Duran, O., Mulet, R.: Evolutionary prisoners dilemma in random graphs. Physica D 208 (3–4), 257–265 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  17. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. 103, 3490–3494 (2006).

    Article  Google Scholar 

  18. Lozano, S., Arenas, A., Sanchez, A.: Mesoscopic structure conditions the emergence of cooperation on social networks. PLoS ONE 3(4): e1892 doi: 10.1371/journal.pone.0001892 (2008).

    Article  Google Scholar 

  19. Castellano, C., Loreto, V., Barrat, A., Cecconi, F., Parisi, D.: Comparison of voter and Glauber ordering dynamics on networks. Phys. Rev. E 71 (6), 066107 (2005).

    Article  Google Scholar 

  20. Sood, V., Redner, S.: Voter model on heterogeneous graphs. Phys. Rev. Lett. 94 (17), 178701 (2005).

    Article  Google Scholar 

  21. Castellano, C., Vilone, D., Vespignani, A.: Incomplete ordering of the voter model on small-world networks. Europhys. Lett. 63 (1), 153158 (2003).

    Article  Google Scholar 

  22. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep. 446 (4–6), 97–216 (2007).

    Article  MathSciNet  Google Scholar 

  23. Stauffer, D.: Sociophysics Simulations II: Opinion Dynamics. arXiv:physics/0503115v1 [physics.soc-ph] (2005).

    Google Scholar 

  24. Bjelland, J., Canright, G., Engø-Monsen, K., Remple, V.P.: Topographic spreading analysis of an empirical sex workers network. In: (ed). Springer, Berlin (2008).

    Google Scholar 

  25. Doreian, P., Stokman, F.N. (ed): Evolution of Social Networks. Routledge, London (1997).

    Google Scholar 

  26. Borgatti, S.P.: The State of Organizational Social Network Research Today. Dept. of Organization Studies. Boston College, Boston, MA (2003).

    Google Scholar 

  27. Snijders, T.A.B.: Models for longitudinal network data. In: Carrington, P., Scott, J., Wasserman, S. (ed) Models and Methods in Social Network. Analysis. Cambridge University Press, New York (2005).

    Google Scholar 

  28. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003).

    MATH  Google Scholar 

  29. Palla, G., Barabási, A-L., Vicsek, T.: Quantifying social group evolution. Nature 446 (5), 664–667 (2007).

    Article  Google Scholar 

  30. Eckmann, J.-P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. PNAS 101 (40), 14333–14337 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  31. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. PNAS 104 (18), 7332–7336 (2007).

    Article  Google Scholar 

  32. Braha, D., Bar-Yam Y.: From centrality to temporary fame: Dynamic centrality in complex networks. Complexity 12 (2), 59–63 (2006).

    Article  Google Scholar 

  33. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  Google Scholar 

  34. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  MathSciNet  Google Scholar 

  35. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E 64, 046132 (2001).

    Article  Google Scholar 

  36. Roth, C.: Generalized Preferential Attachment: Towards Realistic Social Network Models. ISWC 4th Intl Semantic Web Conference. (2005).

    Google Scholar 

  37. Grönlund, A., Holme, P.: Networking the seceder model: Group formation in social and economic systems. Phys. Rev. E 70, 036108 (2004).

    Article  Google Scholar 

  38. Boguña, M., Pastor-Satorras, R., Díaz-Guilera A., Arenas A.: Models of social networks based on social distance attachment. Phys Rev E 70, 056122 (2004).

    Article  Google Scholar 

  39. Lazer, D.: The co-evolution of individual and network. J. Math. Sociol. 25, 69108 (2001).

    Article  Google Scholar 

  40. Gross T., Blassius, B.: Adaptive coevolutionary networks: A review. J. R. Soc. Interface 5 (20), 259–271 (2007).

    Article  Google Scholar 

  41. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc. Nat. Acad. Sci. 97 (16), 9340–9346 (2000).

    Article  MATH  Google Scholar 

  42. Eguiluz, V.M., Zimmermann, M.G., Cela-Conde, C.J., San Miguel, M.: Cooperation and the emergence of role differentiation in the dynamics of social networks. AJS 110 (4), 9771008 (2005).

    Google Scholar 

  43. Biely, C., Dragosits, K., Thurner, S.: The prisoners dilemma on co-evolving networks under perfect rationality. Physica D 228, 4048 (2007).

    MathSciNet  Google Scholar 

  44. Zimmermann, M.G., Eguíluz, V.M.: Cooperation, social networks, and the emergence of leadership in a prisoners dilemma with adaptive local interactions. Phys. Rev. E 72, 056118 (2005).

    Article  MathSciNet  Google Scholar 

  45. Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102(R) (2004).

    Article  Google Scholar 

  46. Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66, 056118 (2002).

    Article  Google Scholar 

  47. Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97, 258103 (2006).

    Article  Google Scholar 

  48. Rosvall, M., Sneppen, K.: Dynamics of opinions and social structures. arXiv:0708.0368v2 [physics.soc-ph] (2007).

    Google Scholar 

  49. Marsili, M., Vega-Redondo, F., Slanina, F.: The rise and fall of a networked society: A formal model. Proc. Nat. Acad. Sci. 101, 1439–1442 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  50. Ehrhardt, G.C.M.A, Marsili, M., Vega-Redondo, F.: Phenomenological models of socioeconomic network dynamics. Phys. Rev. E 74, 036106 (2006).

    Article  Google Scholar 

  51. Holme, P., Ghoshal, G.: Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett. 96, 098701 (2006).

    Article  Google Scholar 

  52. König, M.D, Battiston, S., Napoletano, M., Schweitzer, F.: On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media 3(2) 201–220 (2007).

    Google Scholar 

  53. Rosvall, M., Sneppen, K.: Modeling self-organization of communication and topology in social networks. Phys. Rev. E 74, 016108 (2006).

    Article  MathSciNet  Google Scholar 

  54. Centola, D., González-Avella, J.C., Eguiíluz, V.M., San Miguel, M.: Homophily, cultural drift, and the co-evolution of cultural groups. J. of Conflict Resolution 51 (6), 905–929 (2007).

    Article  Google Scholar 

  55. Axelrod, R.: The dissemination of culture: A model with local convergence and global polarization. The Journal of Conflict Resolution 41 (2), 203–226 (1997).

    Article  Google Scholar 

  56. Benczik, I.J., Benczik, S.Z., Schmittmann, B., Zia, V.: Lack of consensus in social systems. EPL 82, 48006 (2007).

    Article  Google Scholar 

  57. Vázquez, F., Eguíluz, V.M., San Miguel, M.: Generic absorbing transition in co-evolution dynamics. Phys. Rev. Lett. 100, 108702 (2007).

    Article  Google Scholar 

  58. Zanette, D.H., Gil, S.: Opinion spreading and agent segregation on evolving networks. Phys. D 224, 156–165 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  59. Gil, S., Zanette, D.H.: Coevolution of agents and networks: Opinion spreading and community disconnection. Phys. Lett. A 356, 89–95 (2006).

    Article  MATH  Google Scholar 

  60. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985).

    MATH  Google Scholar 

  61. Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74, 056108 (2006).

    Article  Google Scholar 

  62. Gross, T., D'Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).

    Article  Google Scholar 

  63. Gross, T., Kevrekidis, I.G.: Coarse-graining adaptive coevolutionary network dynamics via automated moment closure. arXiv:nlin/0702047v1 [nlin.AO] (2007).

    Google Scholar 

  64. Zanette, D.: Coevolution of agents and networks in an epidemiological model. arXiv:0707.1249v2 [physics.soc-ph] (2007).

    Google Scholar 

  65. Sloot, P.M.A., Ivanov, S.V., Boukhanovsky, A.V., Vijver, D., Boucher, C.A.: Stochastic simulation of HIV population dynamics through complex network modeling, Int. J. of Computer Mathematics 85 (8), 1175–1187 (2008).

    Article  MATH  Google Scholar 

  66. Borgatti, S.P., Molina, J.L.: Toward ethical guidelines for network research in organizations. Social Networks. 27(2), 107–117 (2005).

    Article  Google Scholar 

  67. Birnbaum, M.H.: Methodological and ethical issues in conducting social psychology research via the Internet. In: Sansone, C., Morf, C.C., Panter, A.T. (ed) Handbook of Methods in Social Psychology. Sage, Thousand Oaks, CA (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lozano, S. (2009). Dynamics of Social Complex Networks: Some Insights into Recent Research. In: Ganguly, N., Deutsch, A., Mukherjee, A. (eds) Dynamics On and Of Complex Networks. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4751-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4751-3_8

  • Published:

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4750-6

  • Online ISBN: 978-0-8176-4751-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics