Skip to main content

Semi-global stabilization in the recoverable region: properties and computation of recoverable regions

  • Chapter
  • First Online:
Internal and External Stabilization of Linear Systems with Constraints

Abstract

As in Chap. 8, we consider in this chapter constraints on state as well as input variables. As discussed in detail in Chap. 8, if the given system has at least one of the constraint invariant zeros in the open right-half plane (continuous time) or outside the unit disc (discrete time), that is, if it has non-minimum-phase constraints, then neither semi-global nor global stabilization in the admissible set is possible. Thus, whenever we have non-minimum-phase constraints, the semi-global stabilization is possible only in a certain proper subset of the admissible set. This gives rise to the notion of a recoverable region (set), sometimes also called the domain of null controllability or null controllable region. Generally speaking, for a system with constraints, an initial state is said to be recoverable if it can be driven to zero by some control without violating the constraints on the state and input. We can appropriately term the set of all recoverable initial conditions as the recoverable region. The recoverable region is thus indeed the maximum achievable domain of attraction in stabilizing linear systems subject to non-minimum-phase constraints. The goal of stabilization is to design a feedback, say u = f(x), such that the constraints are not violated and moreover the region of attraction of the equilibrium point of the closed-loop system is equal to the recoverable region or an arbitrarily large subset contained within the recoverable region. Such a stabilization is termed as the semi-global stabilization in the recoverable region, and this is what we pursue in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Aubin, Viability theory, Birkhäuser, 1991.

    Google Scholar 

  2. J.P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, 1990.

    Google Scholar 

  3. G. Bitsoris, “On the linear decentralized constrained regulation problem of discrete-time dynamical systems”, Information and Decision Technologies, 14(3), 1988, pp. 229–239.

    MathSciNet  MATH  Google Scholar 

  4. F. Blanchini, “Set invariance in control”, Automatica, 35(11), 1999, pp. 1747–1769.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Blanchini and S. Miani, “Constrained stabilization of continuous-time linear systems”, Syst. & Contr. Letters, 28(2), 1996, pp. 95–102.

    Article  MathSciNet  MATH  Google Scholar 

  6. ________, “Constrained stabilization via smooth Lyapunov functions”, Syst. & Contr. Letters, 35(3), 1998, pp. 155–163.

    Article  MathSciNet  MATH  Google Scholar 

  7. ________, “On the stabilization of linear discrete-time systems subject to input saturation”, Syst. & Contr. Letters, 36(3), 1999, pp. 241–244.

    Article  MATH  Google Scholar 

  8. ________, “On the constrained asymptotic stabilizability of unstable linear discrete time systems via linear feedback”, in American Control Conference, Arlington, VA, 2001, pp. 4926–4929.

    Google Scholar 

  9. M. Cwikel and P. Gutman, “Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states”, IEEE Trans. Aut. Contr., 31(5), 1986, pp. 457–459.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dontchev and F. Lempio, “Difference methods for differential inclusions: a survey”, SIAM Review, 34(2), 1992, pp. 263–294.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Flügge-Lotz, Discontinuous and optimal control, McGraw-Hill, New York, 1968.

    Google Scholar 

  12. ________, Ed., Nonlinear stochastic control systems, Taylor and Francis, London, 1970.

    MATH  Google Scholar 

  13. J.E. Gayek, “A survey of techniques for approximating reachable and controllable sets”, in Proc. 30th CDC, Brighton, England, 1991, pp. 1724–1729.

    Google Scholar 

  14. T. Hu, Z. Lin, and L. Qiu, “Stabilization of exponentially unstable linear systems with saturating actuators”, IEEE Trans. Aut. Contr., 45(6), 2001, pp. 973–979.

    Article  MathSciNet  Google Scholar 

  15. E.B. Lee and L. Markus, Foundations of optimal control theory, John Wiley & Sons, New York, 1967.

    MATH  Google Scholar 

  16. J.L. LeMay, “Recoverable and reachable zones for control systems with linear plants and bounded controller outputs”, IEEE Trans. Aut. Contr., 9(4), 1964, pp. 346–354.

    Article  MathSciNet  Google Scholar 

  17. E. Michael, “Continuous selections I”, Annals of Mathematics, 63(2), 1956, pp. 361–381.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Nagumo, “Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen”, Proc. Phys. Math. Soc. Japan, 24, 1942, pp. 551–559.

    MathSciNet  MATH  Google Scholar 

  19. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.R. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962.

    MATH  Google Scholar 

  20. R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  21. E.P. Ryan, Optimal relay and saturating control system synthesis, Peter Peregrinus Ltd., 1982.

    Google Scholar 

  22. J. Stephan, M. Bodson, and J. Lehoczky, “Properties of recoverable sets for systems with input and state constraints”, in American Control Conference, Seattle, WA, 1995, pp. 3912–3913.

    Google Scholar 

  23. ________, “Calculation of recoverable sets for systems with input and state constraints”, Opt. Control Appl. & Meth., 19(4), 1998, pp. 247–269.

    Article  MathSciNet  Google Scholar 

  24. ________, “Properties of recoverable region and semi-global stabilization in recoverable region for linear systems subject to constraints”, Automatica, 40(9), 2004, pp. 1481–1494.

    Google Scholar 

  25. M. Vassilaki, J.C. Hennet, and G. Bitsoris, “Feedback control of linear discrete-time systems under state and control constraints”, Int. J. Contr., 47(6), 1988, pp. 1727–1735.

    Article  MathSciNet  MATH  Google Scholar 

  26. X. Wang, A. Saberi, A.A. Stoorvogel, S. Roy, and P. Sannuti, “Computation of the recoverable region and stabilization problem in the recoverable region for discrete-time systems”, Int. J. Contr., 82(10), 2009, pp. 1870–1881.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.A. Yfoulis, A. Muir, and P.E. Wellstead, “A new approach for estimating controllable and recoverable regions with state and control constraints”, Int. J. Robust & Nonlinear Control, 12(7), 2002, pp. 561–589.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saberi, A., Stoorvogel, A.A., Sannuti, P. (2012). Semi-global stabilization in the recoverable region: properties and computation of recoverable regions. In: Internal and External Stabilization of Linear Systems with Constraints. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4787-2_9

Download citation

Publish with us

Policies and ethics