Skip to main content
  • 5896 Accesses

Abstract

Dispersion and nonlinearity play a fundamental role in wave motions in nature. The nonlinear shallow water equations that neglect dispersion altogether lead to breaking phenomena of the typical hyperbolic kind with the development of a vertical profile. In particular, the linear dispersive term in the Korteweg–de Vries equation prevents this from ever happening in its solution. In general, breaking can be prevented by including dispersive effects in the shallow water theory. The nonlinear theory provides some insight into the question of how nonlinearity affects dispersive wave motions. Another interesting feature is the instability and subsequent modulation of an initially uniform wave profile.

True Laws of Nature cannot be linear.

Albert Einstein

… the great primary waves of translation cross each other without change of any kind in the same manner as the small oscillations produced on the surface of a pool by a falling stone.

Scott Russell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions, Dover, New York.

    MATH  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H. (1974). The inverse scattering transform Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249–315.

    MathSciNet  Google Scholar 

  • Airy, G.B., (1845). Tides and Waves, in Encyclopedia Metropolitana, Article 192.

    Google Scholar 

  • Avilov, V.V., Krichever, I.M., and Novikov, S.P. (1987). Evolution of the Whitham zone in the Korteweg–de Vries Theory, Sov. Phys. Dokl. 32, 345–349.

    MathSciNet  Google Scholar 

  • Benjamin, T.B. (1962). The solitary wave on a stream with arbitrary distribution of vorticity, J. Fluid Mech. 12, 97–116.

    MathSciNet  MATH  Google Scholar 

  • Berezin, Y.A. and Karpman, V.I. (1966). Nonlinear evolution of disturbances in plasmas and other dispersive media, Sov. Phys. JETP 24, 1049–1056.

    Google Scholar 

  • Bona, J.L. and Schonbek, M.E. (1985). Travelling-wave solution to the Korteweg–de Vries–Burgers equation, Proc. R. Soc. Edinb., Sect. A 101, 207–226.

    MathSciNet  MATH  Google Scholar 

  • Boussinesq, J. (1871a). Théorie de l’intumescene liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, Comptes Rendus 72, 755–759.

    Google Scholar 

  • Boussinesq, M.J. (1871b). Théorie generale des mouvements qui sont propagés dans un canal rectangulaire horizontal, Comptes Rendus 72, 256–260.

    Google Scholar 

  • Boussinesq, M.J. (1872). Théorie des ondes et des rumous qui se propagent le long d’un canal rectagulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. Ser. (2) 17, 55–108.

    Google Scholar 

  • Boussinesq, M.J. (1877). Essai sur la théorie des eaux courants. Mémoires présentes par diviers savants à l’Académie des Sciences Inst. France (Series 2) 23, 1–630.

    Google Scholar 

  • Bressan, A. and Constantin, A. (2007). Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183, 215–239.

    MathSciNet  MATH  Google Scholar 

  • Camassa, R. and Holm, D.D. (1993). An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661–1664.

    MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.D., and Hyman, J.M. (1994). A new integrable shallow water equation, Adv. Appl. Mech. 31, 1–33.

    Google Scholar 

  • Cercignani, C. (1977). Solitons. Theory and application, Rev. Nuovo Cimento 7, 429–469.

    MathSciNet  Google Scholar 

  • Champneys, A.R., Vanden-Broeck, J.M., and Lord, G.J. (2002). Do true elevation gravity-capillary solitary waves exist? A numerical investigation, J. Fluid Mech. 454, 403–417.

    MathSciNet  MATH  Google Scholar 

  • Claude, Ch., Kivshar, Yu.S., Kluth, O., and Spataschek, K.H. (1993). Liapunov Stability of Generalized Langmuir Solitons, Phys. Rev. B47, 228–234.

    Google Scholar 

  • Constantin, A. and Escher, J. (1998a). Wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181, 229–243.

    MathSciNet  MATH  Google Scholar 

  • Constantin, A. and Escher, J. (1998b). Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math. 51, 475–504.

    MathSciNet  MATH  Google Scholar 

  • Constantin, A. and Escher, J. (1998c). On the structure of family of quasilinear equations arising in shallow water theory, Math. Ann. 312, 403–416.

    MathSciNet  MATH  Google Scholar 

  • Constantin, A. and Lannes, D. (2009). The hydrodynamical relevance of the Camassa–Holm and Degaperis–Procesi Equation, Arch. Ration. Mech. Anal. 192, 165–186.

    MathSciNet  MATH  Google Scholar 

  • Constantin, A. and McKean, H.P. (1999). A shallow water equation on the circle, Commun. Pure Appl. Math. 52(8), 949–982.

    MathSciNet  Google Scholar 

  • Constantin, A. and Strauss, W. (2000). Stability of peakons, Commun. Pure Appl. Math. 53, 603–610.

    MathSciNet  MATH  Google Scholar 

  • Crandall, R.E. (1991). Mathematica for the Sciences, Addison-Wesley, Redwood City.

    Google Scholar 

  • Degasperis, A. and Procesi, M. (1999). Asymptotic Integrability, in Symmetry and Perturbation Theory (eds. A. Degasperis and G. Gaeta), World Scientific, Singapore.

    Google Scholar 

  • Degasperis, A., Holm, D., and Hone, A. (2002). A new integral equation with peakon solutions, Theor. Math. Phys. 133, 1461–1472.

    MathSciNet  Google Scholar 

  • Dodd, R.K. and Fordy, A.P. (1983). The prolongation structures of quasipolynomial flows, Proc. R. Soc. Lond. A385, 389–429.

    MathSciNet  Google Scholar 

  • Dodd, R.K. and Fordy, A.P. (1984). Prolongation structures of complex quasipolynomial evolution equations, J. Phys. A, Math. Gen. 17, 3249–3266.

    MathSciNet  MATH  Google Scholar 

  • Dodd, R.K. and Gibbon, J.D. (1997). The prolongation structures of a higher order Korteweg–de Vries equation, Proc. R. Soc. Lond. A358, 287–296.

    MathSciNet  Google Scholar 

  • Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Dullin, H., Gottwald, G., and Holm, D. (2003). Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent shallow water waves, Fluid Dyn. Res. 33, 73–95.

    MathSciNet  MATH  Google Scholar 

  • Dusuel, S., Michaux, P., and Remoissnet, M. (1998). From kinks to compactionlike kinks, Phys. Rev. E57, 2320–2326.

    Google Scholar 

  • Dutta, M. and Debnath, L. (1965). Elements of the Theory of Elliptic and Associated Functions with Applications, World Press Pub. Ltd., Calcutta.

    MATH  Google Scholar 

  • Escher, J., Liu, Y., and Yin, Z. (2006). Global weak solution and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal. 241, 457–485.

    MathSciNet  MATH  Google Scholar 

  • Fermi, E., Pasta, J., and Ulam, S. (1955). Studies of nonlinear problems I, Los Alamos Report LA 1940, in Lectures in Applied Mathematics (ed. A.C. Newell), Vol. 15, Am. Math. Soc., Providence, 143–156.

    Google Scholar 

  • Fokas, A.S. and Fuchssteiner, B. (1981). Symplectic structures, their bäcklund transformations and hereditary symmetries, Physica D 4, 47–66.

    MathSciNet  MATH  Google Scholar 

  • Fordy, A.P. (1990). Prolongation structures of nonlinear evolution equations, in Soliton Theory: A Survey of Results (ed. A.P. Fordy), Manchester University Press, Manchester, 403–404.

    Google Scholar 

  • Freeman, N.C. (1980). Soliton interactions in two dimensions, Adv. Appl. Mech. 20, 1–37.

    MathSciNet  MATH  Google Scholar 

  • Freeman, N.C. (1984). Soliton solutions of nonlinear evolution equations, IMA J. Appl. Math. 32, 125–145.

    MathSciNet  MATH  Google Scholar 

  • Fuchssteiner, B. (1981). The Lie algebra structure of nonlinear evolution equations and infinite dimensional Abelian symmetry groups, Prog. Theor. Phys. 65, 861–876.

    MathSciNet  MATH  Google Scholar 

  • Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M. (1967). Method for solving the KdV equation, Phys. Rev. Lett. 19, 1095–1097.

    MATH  Google Scholar 

  • Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M. (1974). Korteweg–de Vries equation and generalizations, VI, Methods for exact solution, Commun. Pure Appl. Math. 27, 97–133.

    MathSciNet  MATH  Google Scholar 

  • Gui, G., Lui, Y., and Tian, L. (2008). Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J. 57, 1209–1234.

    MathSciNet  MATH  Google Scholar 

  • Guo, F. (2009). Global weak solutions and wave breaking phenomena to the periodic Degasperis–Procesi equation with strong dispersion, Nonlinear Anal. 71, 5280–5295.

    MathSciNet  MATH  Google Scholar 

  • Hammack, J.L. and Segur, H. (1974). The Korteweg–de Vries equation and water waves, Part 2, Comparison with experiments, J. Fluid Mech. 65, 289–314.

    MathSciNet  MATH  Google Scholar 

  • Herman, R.L. (1990). Resolution of the motion of a perturbed KdV solition, Inverse Probl. 6, 43–54.

    MathSciNet  MATH  Google Scholar 

  • Hirota, R. (1971). Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192–1194.

    MATH  Google Scholar 

  • Hirota, R. (1973a). Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14, 805–809.

    MathSciNet  MATH  Google Scholar 

  • Hirota, R. (1973b). Exact N-solutions of the wave equation of long waves in shallow water and in nonlinear lattices, J. Math. Phys. 14, 810–814.

    MathSciNet  MATH  Google Scholar 

  • Holm, D.D. and Staley, M.F. (2003). Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett. A 308, 437–444.

    MathSciNet  MATH  Google Scholar 

  • Infeld, E. (1980). On three-dimensional generalizations of the Boussinesq and Korteweg–de Vries equations, Q. Appl. Math. XXXVIII, 277–287.

    MathSciNet  Google Scholar 

  • Jeffrey, A. and Xu, S. (1989). Exact solution to the Korteweg–de Vries–Burgers equation, Wave Motion 11, 559–564.

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S. (1980). Water waves and Korteweg–de Vries equations, J. Fluid Mech. 97, 701–719.

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S. (1997). A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Johnson, R. (2002). Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech. 455, 63–82.

    MathSciNet  MATH  Google Scholar 

  • Kadomtsev, B.B. and Petviashvili, V.I. (1970). On stability of solitary waves in weakly dispersive media, Dokl. Akad. Nauk SSSR 192, 753–756; Sov. Phys. Dokl. 15, 539–541.

    Google Scholar 

  • Karpman, V.I. (1967). An asymptotic solution of the Korteweg–de Vries equations, Phys. Lett. 25A, 708–709.

    Google Scholar 

  • Karpman, V.I. and Maslov, E.M. (1978). Structure of tails produced under the action of perturbations on solitons, Sov. Phys. JETP 48, 252–258.

    Google Scholar 

  • Kaup, D.J. (1980). The Estabrook–Wahlquist method with examples of applications, Physica ID, 391–411.

    MathSciNet  Google Scholar 

  • Kaup, D.J. and Newell, A.C. (1978). Solitons as particles and oscillators and in slowly changing media: A singular perturbation theory, Proc. R. Soc. Lond. A361, 413–446.

    Google Scholar 

  • Keady, G. and Norbury, J. (1978). On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc. 83, 137–157.

    MathSciNet  MATH  Google Scholar 

  • Kivshar, Y. (1993). Intrinsic localized modes as solitons with a compact support, Phys. Rev. B48, R43–R45.

    MathSciNet  Google Scholar 

  • Ko, K. and Kuehl, H.H. (1980). Energy loss of Korteweg–de Vries solitary wave in a slowly varying medium, Phys. Fluids 23, 834–836.

    MathSciNet  MATH  Google Scholar 

  • Korteweg, D.J. and de Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39, 422–443.

    Google Scholar 

  • Krasovskii, Y.P. (1960). On the theory of steady waves of not all small amplitude (in Russian), Dokl. Akad. Nauk SSSR 130, 1237–1252.

    MathSciNet  Google Scholar 

  • Krasovskii, Y.P. (1961). On the theory of permanent waves of finite amplitude, Zh. Vychisl. Mat. Fiz 1, 836–855 (in Russian).

    MathSciNet  Google Scholar 

  • Kruskal, M. (1975). Nonlinear wave equations, in Dynamical Systems, Theory and Applications (ed. J. Moser), Lecture Notes in Physics, Vol. 38, Springer, Heidelberg, 310–354.

    Google Scholar 

  • Lai, S. and Wu, Y. (2011). A model containing both the Camassa–Holm and Degasperis–Procesi equations, J. Math. Anal. Appl. 374, 458–469.

    MathSciNet  MATH  Google Scholar 

  • Landau, L.D. and Lifshitz, E.M. (1959). Fluid Mechanics, Pergamon Press, New York.

    Google Scholar 

  • Lax, P.D. (1968). Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21, 467–490.

    MathSciNet  MATH  Google Scholar 

  • Lenells, J. (2005). Conservation laws of the Camassa–Holm equation, J. Phys. A 38, 869–880.

    MathSciNet  MATH  Google Scholar 

  • Leo, M., Leo, R.A., Soliani, G., and Solombrino, L. (1983). Lie–Bäcklund symmetrics for the Harry Dym equation, Phys. Rev. D 27, 1406–1408.

    MathSciNet  Google Scholar 

  • Ludu, A. and Draayer, J.P. (1998). Patterns on liquid surfaces: Cnoidal waves, compactons and scaling, Physica D123, 82–91.

    MathSciNet  Google Scholar 

  • Ludu, A., Stoitcheva, G. and Draayer, J.P. (2000). Similarity analysis of nonlinear equations and bases of finite wavelength solitons, Int. J. Mod. Phys. E9, 263–278.

    Google Scholar 

  • Lundmark, H. (2007). Formation and dynamics of shock waves in the Degasperis–Procesi equation, J. Nonlinear Sci. 17, 169–198.

    MathSciNet  MATH  Google Scholar 

  • Lundmark, H. and Szmigielski, J. (2003). Multi-peakon solutions of the Degasperis–Procesi equation, Inverse Probl. 9, 1241–1245.

    MathSciNet  Google Scholar 

  • Makhankov, V.G. (1978). Dynamics of classical solitons, Phys. Rep. 35, 1–128.

    MathSciNet  Google Scholar 

  • Matsuno, Y. (2005a). Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit, Inverse Probl. 21, 1553–1570.

    MathSciNet  MATH  Google Scholar 

  • Matsuno, Y. (2005b). The N-soliton solution of the Degasperis–Procesi equation, Inverse Probl. 21, 2085–2101.

    MathSciNet  MATH  Google Scholar 

  • McKean, H.P. (2003). Fredholm determinants and the Camassa–Holm hierarchy, Commun. Pure Appl. Math. 56, 638–680.

    MathSciNet  MATH  Google Scholar 

  • Miura, R.M. (1968). Korteweg de Vries equation and generalizations. I. Remarkable explicit transformation, J. Math. Phys. 9, 1202–1204.

    MathSciNet  MATH  Google Scholar 

  • Miura, R.M., Gardner, C.S., and Kruskal, M.D. (1968). Korteweg–de Vries equations and generalizations, II; Existence of conservation laws and constants of motion, J. Math. Phys. 9, 1204–1209.

    MathSciNet  MATH  Google Scholar 

  • Naumkin, P.I. and Shishmarev, I.A. (1994). Nonlinear Nonlocal Equations in the Theory of Waves, Vol. 133, Am. Math. Soc., Providence.

    MATH  Google Scholar 

  • Nimmo, J.J.C. and Freeman, N.C. (1983). The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form, J. Phys. A, Math. Gen. 17, 1415–1424.

    MathSciNet  Google Scholar 

  • Ohta, Y., Maruno, K.I., and Feng, B.F. (2008). An integrable semi-discretization of Camassa–Holm equation and its determinant solution, J. Phys. A, Math. Theor. 41, 1–30.

    MathSciNet  Google Scholar 

  • Oron, A. and Rosenau, P. (1989). Evolution of the coupled Bérnard-Marangoni convection, Phys. Rev. A39, 2063–2069.

    Google Scholar 

  • Ostrovsky, L.A. (1976). Short-wave asymptotics for weak shock waves and solitons in mechanics, Int. J. Non-Linear Mech. 11, 401–406.

    MathSciNet  MATH  Google Scholar 

  • Otto, E. and Sudan, R.N. (1971). Nonlinear theory of ion acoustic waves with Landeu damping, Phys. Fluids 13, 2388–2394.

    Google Scholar 

  • Page, B. (1990). Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems, Phys. Rev. B41, 7835–7837.

    MathSciNet  Google Scholar 

  • Palais, R.S. (1997). The symmetrics of solitons, Bull. Am. Math. Soc. 34, 339–403.

    MathSciNet  MATH  Google Scholar 

  • Parker, A. (2004). On the Camassa–Holm equation and a direct method of solution: I. Bilinear form and solitary waves, Proc. R. Soc. Lond. 460, 2929–2957.

    MATH  Google Scholar 

  • Parker, A. (2005a). On the Camassa–Holm equation and a direct method of solution: II. Soliton solutions, Proc. R. Soc. Lond. 461, 3611–3632.

    MATH  Google Scholar 

  • Parker, A. (2005b). On the Camassa–Holm equation and a direct method of solution: III. N-soliton solutions, Proc. R. Soc. Lond. 461, 3893–3911.

    MATH  Google Scholar 

  • Pullin, D.I. and Grimshaw, R.H.J. (1988). Finite amplitude solitary waves at the interface between two homogeneous fluids, Phys. Fluids 31, 3550–3559.

    MathSciNet  MATH  Google Scholar 

  • Qiao, Z. (1995). Generation of the hierarchies of solitons and generalized structure of the commutator representation, Acta Math. Appl. Sin. 18, 287–301.

    MATH  Google Scholar 

  • Qiao, Z. (2003). The Camassa–Holm hierarchy, related N-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Commun. Math. Phys. 239, 309–341.

    MATH  Google Scholar 

  • Qiao, Z. and Strampp, W. (2002). Negative order MKdV hierarchy and a new integrable Neumann-like system, Physica A 313, 365–380.

    MathSciNet  MATH  Google Scholar 

  • Qiao, Z.J. and Zhang, G. (2006). On peaked and smooth solitons for the Camassa–Holm equation, Europhys. Lett. 73, 657–663.

    MathSciNet  Google Scholar 

  • Rayleigh, L. (1876). On waves, Philos. Mag. 1, 257–279.

    Google Scholar 

  • Riabouchinsky, D. (1932). Sur l’analogie hydraulique des mouvements d’un fluide compressible, Acad. Sci., Comptes Rendus 195, 998–1015.

    Google Scholar 

  • Rosales, R.R. (1978). The similarity solution for the Korteweg–de Vries equation and the related Painlevé transcendent, Proc. R. Soc. Lond. A361, 265–275.

    MathSciNet  Google Scholar 

  • Rosenau, P. (1994). Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73, 1737–1741.

    MathSciNet  MATH  Google Scholar 

  • Rosenau, P. (1997). On nonanalytical solitary waves formed by a nonlinear dispersion, Phys. Lett. A230, 305–318.

    MathSciNet  Google Scholar 

  • Rosenau, P. and Hyman, J.M. (1993). Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 70, 564–567.

    MATH  Google Scholar 

  • Sagdeev, R.Z. (1966). Review of Plasma Physics Vol. IV, Consultants Bureau, New York (ed. M.A. Leontovich).

    Google Scholar 

  • Sandusky, K.W., Page, J.B., and Schmidt, K.E. (1992). Stability and motion of intrinsic localized modes in nonlinear periodic lattices, Phys. Rev. B46, 6161–6170.

    Google Scholar 

  • Segur, H. (1973). The Korteweg–de Vries equation and water waves. I. Solutions of the equation, J. Fluid Mech. 59, 721–736.

    MathSciNet  MATH  Google Scholar 

  • Sievers, A.J. and Takeno, S. (1988). Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett. 61, 970–973.

    Google Scholar 

  • Simmen, J.A. and Saffman, P.G. (1985). Steady deep water waves on a linear shear current, Stud. Appl. Math. 75, 35–57.

    MathSciNet  Google Scholar 

  • Stokes, G. (1847). On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8, 197–229.

    Google Scholar 

  • Struik, D.J. (1926). Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal á profondeur finie, Math. Ann. 95, 595–634.

    MathSciNet  MATH  Google Scholar 

  • Teles Da Silva, A.F. and Peregrine, D.H. (1988). Steep solitary waves in water of finite depth with constant vorticity, J. Fluid Mech. 195, 281–305.

    MathSciNet  Google Scholar 

  • Toland, J.F. (1978). On the existence of a wave of greatest height and Stokes’ conjecture, Proc. R. Soc. Lond. A363, 469–485.

    MathSciNet  Google Scholar 

  • Vakhnenko, V. and Parkes, E. (2004). Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals 20, 1059–1073.

    MathSciNet  MATH  Google Scholar 

  • Vanden-Broeck, J.M. (1994). Steep solitary waves in water of finite depth with constant vorticity, J. Fluid Mech. 274, 339–348.

    MathSciNet  MATH  Google Scholar 

  • Vanden-Broeck, J.M. (1995). New families of steep solitary waves in water of finite depth with constant vorticity, Eur. J. Mech. B, Fluids 14, 761–774.

    MathSciNet  MATH  Google Scholar 

  • Vanden-Broeck, J.M. (1996a). Periodic waves with constant vorticity in water of infinite depth, IMA J. Appl. Math. 56, 207–217.

    MATH  Google Scholar 

  • Vanden-Broeck, J.M. (1996b). Numerical calculations of the free-surface flow under a sluice gate, J. Fluid Mech. 330, 339–347.

    MathSciNet  Google Scholar 

  • Vanden-Broeck, J.M. (2010). Gravity-Capillary Free-Surface Flows, Cambridge University Press, London.

    MATH  Google Scholar 

  • Vanden-Broeck, J.M. and Dias, F. (1992). Gravity-capillary solitary waves in water of infinite depth and related free-surface flows, J. Fluid Mech. 240, 549–557.

    MathSciNet  MATH  Google Scholar 

  • Wahlquist, H.D. and Estabrook, F.B. (1973). Bäcklund transformations for solutions of the Korteweg–de Vries equation, Phys. Rev. Lett. 23, 1386–1389.

    MathSciNet  Google Scholar 

  • Wahlquist, H.D. and Estabrook, F.B. (1975). Prolongation structures and nonlinear evolution equations, J. Math. Phys. 16, 1–17.

    MathSciNet  MATH  Google Scholar 

  • Wahlquist, H.D. and Estabrook, F.B. (1976). Prolongation structures and nonlinear evolution equations, J. Math. Phys. 17, 1403–1411.

    MathSciNet  Google Scholar 

  • Wazwaz, A.M. (2002). Partial Differential Equation Methods and Applications, A.A. Balkema Publishers, Tokyo.

    Google Scholar 

  • Weidman, P.D. and Maxworthy, T. (1978). Experiments on strong interactions between solitary waves, J. Fluid Mech. 85, 417–431.

    Google Scholar 

  • Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York.

    MATH  Google Scholar 

  • Whitham, G.B. (1984). Comments on periodic waves and solitons, IMA J. Appl. Math. 32, 353–366.

    MathSciNet  MATH  Google Scholar 

  • Zabusky, N.J. (1967). A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in Proc. Symp. on Nonlinear Partial Differential Equations (ed. W.F. Ames), Academic Press, Boston.

    Google Scholar 

  • Zabusky, N.J. and Galvin, C.J. (1971). Shallow water waves, the Korteweg–de Vries equation and solitons, J. Fluid Mech. 47, 811–824.

    Google Scholar 

  • Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243.

    MATH  Google Scholar 

  • Zakharov, V.E. and Shabat, A.B. (1972). Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62–69.

    MathSciNet  Google Scholar 

  • Zakharov, V.E. and Shabat, A.B. (1974). A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funct. Anal. Appl. 8, 226–235.

    MATH  Google Scholar 

  • Zhang, G. and Qiao, Z. (2007). Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition, Math. Phys. Anal. Geom. 10, 205–225.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokenath Debnath .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Debnath, L. (2012). Solitons and the Inverse Scattering Transform. In: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8265-1_9

Download citation

Publish with us

Policies and ethics