Skip to main content

How to Select Your Animal Model for Osteoporosis Research

  • Chapter
  • First Online:
Osteoporosis Research

Abstract

The rising burden of osteoporotic fractures increases morbidity and mortality in the aging population, imposing a significant cost on society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karlsson MK, Gerdhem P, Ahlborg HG. The prevention of osteoporotic fractures. J Bone Joint Surg Br. 2005;87-B:1320-1327.

    Article  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:­465-475.

    Article  PubMed  Google Scholar 

  3. Turner AS. Animal models of osteoporosis – necessity and limitations. Eur Cells Mater. 2001;1:66-81.

    CAS  Google Scholar 

  4. Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA guidelines and animal models for osteoporosis. Bone. 1995; 17:125S-133S.

    Article  PubMed  CAS  Google Scholar 

  5. Lelovas PP, Xanthos TT, Thoma SE, et al. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424-430.

    PubMed  CAS  Google Scholar 

  6. Leitner MM, Tami AE, Montavon PM, et al. Longitudinal as well as age-matched assessments of bone changes in the mature ovariectomized rat model. Lab Anim. 2009;43(3):266-271.

    Article  PubMed  CAS  Google Scholar 

  7. Sigrist IM, Gerhardt C, Alini M, et al. The long-term effects of ovariectomy on bone metabolism in sheep. J Bone Miner Res. 2007;25:28-35.

    CAS  Google Scholar 

  8. Podolsky LM, Lukas VS. The Care and Feeding of an IACUC. Boca Raton: CRC; 1999.

    Book  Google Scholar 

  9. Silverman J, Suckow MA, Murthy S. The IACUC Handbook. Boca Raton: CRC; 2000.

    Google Scholar 

  10. Hart LA, ed. Responsible Conduct with Research Animals. New York: Oxford University Press; 1998.

    Google Scholar 

  11. International regulations and resources. http://www.aaalac.org/resources/internationalregs.cfm

  12. Fox J, Newman MK, Turner CH, et al. Effects of treatment with parathyroid hormone 1-84 on quantity and biomechanical properties of thoracic vertebral trabecular bone in ­ovariectomized rhesus monkeys. Calcif Tissue Int. 2008; 82(3):212-220.

    Article  PubMed  CAS  Google Scholar 

  13. Smith SY, Jolette J, Turner CH. Skeletal health: primate model of postmenopausal osteoporosis. Am J Primatol. 2009;71(9):752-765.

    Article  PubMed  CAS  Google Scholar 

  14. Akahoshi S, Sakai A, Arita S, et al. Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipigs. J Bone Miner Metab. 2005;23:341-350.

    Article  PubMed  CAS  Google Scholar 

  15. Glüer CC, Scholz-Ahrens KE, Helfenstein A, et al. Iban­dronate treatment reverses glucocorticoid-induced loss of bone mineral density and strength in minipigs. Bone. 2007; 40:645-655.

    Article  PubMed  Google Scholar 

  16. Reinwald S, Burr D. Perspective: review of nonprimate large animal models for osteoporosis research. J Bone Miner Res. 2008;23:1353-1368.

    Article  PubMed  Google Scholar 

  17. Harkness JE, Wagner JE. The Biology and Medicine of Rabbits and Rodents. 4th ed. Baltimore: Williams & Wilkins; 1995.

    Google Scholar 

  18. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cells Mater. 2007;13:1-10.

    CAS  Google Scholar 

  19. Donahue SW, McGee ME, Harvey KB, et al. Hibernating bears as a model for preventing disuse osteoporosis. J Biomech. 2006;39(8):1480-1488.

    Article  PubMed  Google Scholar 

  20. McGee-Lawrence ME, Wojda SJ, Barlow LN, et al. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone. 2009;45:1186-1191.

    Article  PubMed  Google Scholar 

  21. Getty R. Sisson and Grossman’s the Anatomy of the Domestic Animals. 5th ed. Philadelphia: W.B. Saunders; 1975:777.

    Google Scholar 

  22. National Osteoporosis Foundation. Fast facts on osteoporosis. http://www.nof.org/osteoporosis/diseasefacts.htm. Accessed October 10, 2009.

  23. Morrow R, Deyhim F, Patil BS, et al. Feeding orange pulp improved bone quality in a rat model of male osteoporosis. J Med Food. 2009;12(2):298-303.

    Article  PubMed  CAS  Google Scholar 

  24. Sipos W, Rauner M, Skalicky M, et al. Running has a negative effect on bone metabolism and proinflammatory status in male aged rats. Exp Gerontol. 2008;43:578-583.

    Article  PubMed  CAS  Google Scholar 

  25. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005; 16:S129-S138.

    Article  PubMed  Google Scholar 

  26. Watts ES. Skeletal development. In: Richard Dukelow W, Erwin J, eds. Comparative Primate Biology: Reproduction and Development, vol. 3. New York: A.R Liss; 1986:415-439.

    Google Scholar 

  27. MacLeay JM, Olson JD, Enns RM, et al. Dietary induced metabolic acidosis decreases bone mineral density in mature ovariectomized ewes. Calcif Tissue Int. 2004;75:431-437.

    Article  PubMed  CAS  Google Scholar 

  28. MacLeay JM, Olson JD, Turner AS. Effect of dietary-induced metabolic acidosis and ovariectomy on bone mineral density and markers of bone turnover. J Bone Miner Metab. 2004;22:561-568.

    Article  PubMed  CAS  Google Scholar 

  29. Schorlemmer S, Ignatius A, Claes L, et al. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated sheep. Bone. 2005;37:491-496.

    Article  PubMed  CAS  Google Scholar 

  30. Klopfenstein-Bregger MD, Schawalder P, Rahn B, et al. Optimization of corticosteroid induced osteoporosis in ­ovariectomized sheep. A bone histomorphometric study. Vet Comp Orthop Traumatol. 2007;20(1):18-23.

    PubMed  CAS  Google Scholar 

  31. Aerssens J, Boonedn S, Lowet G, et al. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139:663-670.

    Article  PubMed  CAS  Google Scholar 

  32. Turner AS. Review: the sheep as a model for osteoporosis in humans. Vet J. 2002;163:1-8.

    Article  Google Scholar 

  33. Turner AS, MacLeay JM. Osteoporosis: advantages and disadvantages of commonly used animal models. Adv Osteo­porotic Fract Manag. 2002;1(3):80-86.

    Google Scholar 

  34. Turner AS. Seasonal changes in bone metabolism in sheep: further characterization of an animal model for human osteoporosis [Guest editorial]. Vet J. 2006;174(3):460-461.

    Article  PubMed  Google Scholar 

  35. Arens D, Sigrist I, Alini M, et al. Seasonal changes in bone metabolism in sheep. Vet J. 2007;174(3):585-591.

    Article  PubMed  CAS  Google Scholar 

  36. Kharode YP, Sharp MC, Bodine PV. Utility of the ovariectomized rat as a model for human osteoporosis in drug discovery. Methods Mol Biol. 2008;455:111-124.

    Article  PubMed  CAS  Google Scholar 

  37. Kennedy OD, Brennan O, Rackard SM, et al. Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery. J Orthop Res. 2009;27(3):303-309.

    Article  PubMed  Google Scholar 

  38. Waarsing JH, Day JS, Verhaar JAN, et al. Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res. 2006;24(5):926-935.

    Article  PubMed  Google Scholar 

  39. Norrdin RW, Histand MB, Sheahan HJ, et al. Effects of corticosteroids on mechanical strength of intervertebral joints and vertebrae in dogs. Clin Orthop Relat Res. 1990;259:68-76.

    Google Scholar 

  40. Egermann M, Goldhahn J, Holz R, et al. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab Anim. 2008;42(4):453-464.

    Article  PubMed  CAS  Google Scholar 

  41. Leung KS, Siu WS, Li SF, et al. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Mater Res B. 2006; 78B:153-160.

    Article  CAS  Google Scholar 

  42. Kerstetter JE, O’Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisted. Am J Clin Nutr. 2003;78(Suppl):584S-592S.

    PubMed  CAS  Google Scholar 

  43. Lemann J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol. 2003;285:F811-F832.

    PubMed  CAS  Google Scholar 

  44. Giannoudis PV, Schneider E. Principles of fixation of osteoporotic fractures. J Bone Joint Surg Br. 2006;88-B(10):1272-1278.

    Article  Google Scholar 

  45. Goldhahn J, Reinhold M, Stauber M, et al. Improved anchorage in osteoporotic vertebrae with new implant designs. J Orthop Res. 2006;24(5):917-925.

    Article  PubMed  CAS  Google Scholar 

  46. Borsari V, Fini M, Giavaresi G, et al. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged and estrogen deficient sheep. J Orthop Res. 2007;25(9):1250-1260.

    Article  PubMed  CAS  Google Scholar 

  47. Hayashi K, Fotovati A, Ali SA, et al. Prostaglandin EP4 receptor agonist augments fixation of hydroxyapatite-coated implants in a rat model of osteoporosis. J Bone Joint Surg Br. 2005;87-B:1150-1156.

    Article  Google Scholar 

  48. McCann RM, Colleary G, Geddis C, et al. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 2008;26(3):384-393.

    Article  PubMed  Google Scholar 

  49. Akbay A, Bozkurt G, Ilgaz O, et al. A demineralized calf vertebrae model as an alternative to classic osteoporotic vertebrae models for pedicle screw pullout studies. Eur Spine J. 2008;17(3):468-473.

    Article  PubMed  Google Scholar 

  50. Tranquilli WJ, Thurmon JC, Grimm KA. Lumb and Jones’ Veterinary Anesthesia and Analgesia. 4th ed. Ames: Blackwell; 2007.

    Google Scholar 

  51. Gaynor JS, Muir WW III. Handbook of Veterinary Pain Management. Missouri: Mosby Elsevier; 2002.

    Google Scholar 

  52. Flecknell PA, Waterman-Pearson A, eds. Pain Management in Animals. Philadelphia: W.B. Saunders; 2000.

    Google Scholar 

  53. Wu ZX, Lei W, Hu YY, et al. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys. 2008;30(9):1112-1118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments I am grateful to Drs. Sue VandeWoude and Ann Wagner, Colorado State University, for helpful suggestions for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simon Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Turner, A.S. (2011). How to Select Your Animal Model for Osteoporosis Research. In: Duque, G., Watanabe, K. (eds) Osteoporosis Research. Springer, London. https://doi.org/10.1007/978-0-85729-293-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-293-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-292-6

  • Online ISBN: 978-0-85729-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics