Skip to main content

Mouse models for the Study of Fracture Healing and Bone Regeneration

  • Chapter
  • First Online:
Osteoporosis Research

Abstract

Fragility fractures represent one of the major problems associated with osteoporosis. While in the mid-1990s about half a million hospital admissions in the United States were due to osteoporotic fractures, this number will triple until 2040. Of interest, already in 1995, the direct costs produced by osteoporotic fractures were more than US$14 billion, whereas the indirect costs are estimated to be up to five times higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasnic RD. Epidemiology of osteoporosis in the United States of America. Osteoporos Int. 1997;7:S68-S72.

    Article  Google Scholar 

  2. Boyle P, Leon ME, Autier P. Epidemiology of osteoporosis. J Epidemiol Biostat. 2001;6:185-192.

    Article  PubMed  CAS  Google Scholar 

  3. Cummings SR, Black DM, Rubin SM. Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med. 1989;149:2445-2448.

    Article  PubMed  CAS  Google Scholar 

  4. Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993;7:438-442.

    Article  PubMed  CAS  Google Scholar 

  5. Cornell CN. Internal fracture fixation in patients with osteoporosis. J Am Acad Orthop Surg. 2003;11:109-119.

    PubMed  Google Scholar 

  6. Sterck JG, Klein-Nulend J, Lips P, Burger EH. Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol. 1998;274:E1113-E1120.

    PubMed  CAS  Google Scholar 

  7. Lill CA, Hesseln J, Schlegel U, Eckhardt C, Goldhahn J, Schneider E. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res. 2003;21:836-842.

    Article  PubMed  CAS  Google Scholar 

  8. Namkung-Matthai H, Appleyard R, Jansen J, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80-86.

    Article  PubMed  CAS  Google Scholar 

  9. Walsh WR, Sherman P, Howlett CR, Sonnabend DH, Ehrlich MG. Fracture healing in a rat osteopenia model. Clin Orthop. 1997;342:218-227.

    PubMed  Google Scholar 

  10. Ashhurst DE, Hogg J, Perren SM. A method for making reproducible experimental fractures of the rabbit tibia. Injury. 1982;14:236-242.

    Article  PubMed  CAS  Google Scholar 

  11. Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2:97-101.

    Article  PubMed  CAS  Google Scholar 

  12. Cheal EJ, Mansmann KA, DiGioia AM III, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res. 1991;9:131-142.

    Article  PubMed  CAS  Google Scholar 

  13. Davy DT, Connolly JF. The biomechanical behaviour of healing canine radii and ribs. J Biomech. 1982;15:235-247.

    Article  PubMed  CAS  Google Scholar 

  14. Hiltunen A, Vuorio E, Aro HT. A standardized experimental fracture in the mouse tibia. J Orthop Res. 1993;11:305-312.

    Article  PubMed  CAS  Google Scholar 

  15. Nunamaker DM, Richardson DW, Butterveck DM, Provost MT, Sigafoos RD. A new external skeletal fixation device that allows immediate full weightbearing: application in the horse. Vet Surg. 1986;15:1345-1355.

    Google Scholar 

  16. Toombs JP, Wallace LJ, Bjorling DE, Rowland GN. Evaluation of Key’s hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res. 1985;46:513-518.

    PubMed  CAS  Google Scholar 

  17. Nunamaker DM. Experimental models of fracture repair. Clin Orthop Relat Res. 1998;355:S56-S65.

    Article  PubMed  Google Scholar 

  18. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005; 16:S129-S138.

    Article  PubMed  Google Scholar 

  19. Gennari L, Merlotti D, Nuti R. Perspectives in the treatment and prevention of osteoporosis. Drugs Today. 2009;45:629-647.

    Article  PubMed  CAS  Google Scholar 

  20. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone. 1993;14:681-691.

    Article  PubMed  CAS  Google Scholar 

  21. Jacenko O, Olsen BR. Transgenic mouse models in studies of skeletal disorders. J Rheumatol Suppl. 1995;43:39-41.

    PubMed  CAS  Google Scholar 

  22. Houdebine LM. Transgenic animal models in biomedical research. Methods Mol Biol. 2007;360:163-202.

    PubMed  CAS  Google Scholar 

  23. Silver LM. Mouse Genetics. New York: Oxford University Press; 1995.

    Google Scholar 

  24. Holstein JH, Garcia P, Histing T, et al. Advances in the establishment of defined mouse models for the study of ­fracture healing and bone regeneration. J Orthop Trauma. 2009;23:S31-S38.

    Article  PubMed  CAS  Google Scholar 

  25. Lu C, Miclau T, Hu D, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23:1300-1307.

    PubMed  CAS  Google Scholar 

  26. Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci. 2002;41:21-26.

    PubMed  CAS  Google Scholar 

  27. Manigrasso MB, O’Connor JP. Characterization of a closed femur fracture model in mice. J Orthop Trauma. 2004;18:687-695.

    Article  PubMed  Google Scholar 

  28. Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med. 1999;1:121-133.

    Article  PubMed  CAS  Google Scholar 

  29. Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone. 2005;37:688-698.

    Article  PubMed  CAS  Google Scholar 

  30. Nakase T, Nomura S, Yoshikawa H, et al. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res. 1994;9:651-659.

    Article  PubMed  CAS  Google Scholar 

  31. Paccione MF, Warren SM, Spector JA, Greenwald JA, Bouletreau PJ, Longaker MT. A mouse model of mandibular osteotomy healing. J Craniofac Surg. 2001;12:444-450.

    Article  PubMed  CAS  Google Scholar 

  32. Stone CA. Unravelling the secrets of foetal wound healing: an insight into fracture repair in the mouse foetus and perspectives for clinical application. Br J Plast Surg. 2000; 53:337-341.

    Article  PubMed  CAS  Google Scholar 

  33. Zilberman Y, Kallai I, Gafni Y, et al. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells. J Orthop Res. 2008;26:522-530.

    Article  PubMed  CAS  Google Scholar 

  34. Uusitalo H, Rantakokko J, Ahonen M, et al. A metaphyseal defect model of the femur for studies of murine bone healing. Bone. 2001;28:423-429.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia P, Holstein JH, Histing T, et al. A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing. J Biomech. 2008;41:1689-1696.

    Article  PubMed  CAS  Google Scholar 

  36. Röntgen V, Blakytny R, Matthys R, et al. Fracture healing in mice under controlled rigid and flexible conditions using an adjustable external fixator. J Orthop Res. 2010;28:1456-1462.

    Article  PubMed  Google Scholar 

  37. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence of MMP9. Development. 2003;130:4123-4133.

    Article  PubMed  CAS  Google Scholar 

  38. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011-1017.

    Article  PubMed  Google Scholar 

  39. Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16:S36-S43.

    Article  PubMed  Google Scholar 

  40. Claes L, Eckert-Hübner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res. 2002;20:1099-1105.

    Article  PubMed  Google Scholar 

  41. Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res. 2005;23:1022-1028.

    Article  PubMed  CAS  Google Scholar 

  42. Lienau J, Schell H, Epari DR, et al. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. J Orthop Res. 2006;24:254-262.

    Article  PubMed  CAS  Google Scholar 

  43. Lienau J, Schell H, Duda GN, Seebeck P, Muchow S, Bail HJ. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res. 2005;23:639-645.

    Article  PubMed  Google Scholar 

  44. Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone. Matrix Biol. 2000;19:91-96.

    Article  PubMed  CAS  Google Scholar 

  45. Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res. 2001;19:78-84.

    Article  PubMed  CAS  Google Scholar 

  46. Auer JA, Goodship A, Arnoczky S, et al. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord. 2007;8:72.

    Article  PubMed  Google Scholar 

  47. Histing T, Holstein JH, Garcia P, et al. Ex vivo analysis of rotational stiffness of different osteosynthesis techniques in mouse femur fracture. J Orthop Res. 2009;27:1152-1156.

    Article  PubMed  Google Scholar 

  48. Holstein JH, Matthys R, Histing T, et al. Development of a stable closed femoral fracture model in mice. J Surg Res. 2009;153:71-75.

    Article  PubMed  Google Scholar 

  49. Strømsøe K. Fracture fixation problems osteoporosis. Injury. 2004;35:107-113.

    Article  PubMed  Google Scholar 

  50. Holstein JH, Menger MD, Culemann U, Meier C, Pohlemann T. Development of a locking femur nail for mice. J Biomech. 2007;40:215-219.

    Article  PubMed  CAS  Google Scholar 

  51. Matthys R, Perren SM. Internal fixator for use in the mouse. Injury. 2009;40:S103-S109.

    Article  PubMed  Google Scholar 

  52. Histing T, Garcia P, Matthys R, et al. An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. J Orthop Res. 2010;28(3):397-402.

    PubMed  Google Scholar 

  53. Gröngröft I, Heil P, Matthys R, et al. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J Biomech. 2009;42:2089-2096.

    Article  PubMed  Google Scholar 

  54. Garcia P, Holstein JH, Maier S, et al. Development of a reliable non-union model in mice. J Surg Res. 2008;147:84-91.

    Article  PubMed  Google Scholar 

  55. Garcia P, Herwerth S, Matthys R, Holstein JH, Histing T, Menger MD, Pohlemann T. The locking mouse nail - a new implant for standardized stable osteosynthesis in mice. J Surg Res. 2009 Dec 10.

    Google Scholar 

  56. Lee SW, Padmanabhan P, Ray P, et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res. 2009;27:295-302.

    Article  PubMed  Google Scholar 

  57. Zachos TA, Bertone AL, Wassenaar PA, Weisbrode SE. Rodent models for the study of articular fracture healing. J Invest Surg. 2007;20:87-95.

    Article  PubMed  Google Scholar 

  58. Mayer-Kuckuk P, Boskey AL. Molecular imaging promotes progress in orthopedic research. Bone. 2006;39:965-977.

    Article  PubMed  CAS  Google Scholar 

  59. Cano J, Campo J, Vaquero JJ, Martínez JM, Bascones A. High resolution image in bone biology I. Review of the literature. Med Oral Patol Oral Cir Bucal. 2007;12:E454-E458.

    PubMed  Google Scholar 

  60. Cano J, Campo J, Vaquero JJ, Martínez González JM, Bascones A. High resolution image in bone biology II. Review of the literature. Med Oral Patol Oral Cir Bucal. 2008;13:E31-E35.

    PubMed  Google Scholar 

  61. Garcia P, Schwenzer S, Slotta JE, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation - role of a local renin-angiotensin system. Br J Pharmacol. 2010;159:1672-1680.

    Article  PubMed  CAS  Google Scholar 

  62. Holstein JH, Menger MD, Scheuer C, et al. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. Life Sci. 2007;80:893-900.

    Article  PubMed  CAS  Google Scholar 

  63. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP. allus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007;41:928-936.

    Article  PubMed  CAS  Google Scholar 

  64. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res. 2007;22:286-297.

    Article  PubMed  CAS  Google Scholar 

  65. Gerstenfeld LC, Wronski TJ, Hollinger JO, Einhorn TA. Application of histomorphometric methods to the study of bone repair. J Bone Miner Res. 2005;20:1715-1722.

    Article  PubMed  Google Scholar 

  66. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2:595-610.

    Article  PubMed  CAS  Google Scholar 

  67. Holstein JH, Klein M, Garcia P, et al. Rapamycin affects early fracture healing in mice. Br J Pharmacol. 2008; 154:1055-1062.

    Article  PubMed  CAS  Google Scholar 

  68. Claes L, Schmalenbach J, Herrmann M, et al. Hyper­homocysteinemia is associated with impaired fracture healing in mice. Calcif Tissue Int. 2009;85:17-21.

    Article  PubMed  CAS  Google Scholar 

  69. Toyosawa S, Kanatani N, Shintani S, et al. Expression of dentin matrix protein 1 (DMP1) during fracture healing. Bone. 2004;35:553-561.

    Article  PubMed  CAS  Google Scholar 

  70. Uusitalo H, Hiltunen A, Söderström M, Aro HT, Vuorio E. Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus. Calcif Tissue Int. 2000;67:382-390.

    Article  PubMed  CAS  Google Scholar 

  71. Matsumoto T, Mifune Y, Kawamoto A, et al. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol. 2008;215:234-242.

    Article  PubMed  CAS  Google Scholar 

  72. Miller BS, Bronk JT, Nishiyama T, et al. Pregnancy associated plasma protein-A is necessary for expeditious fracture healing in mice. J Endocrinol. 2007;192:505-513.

    Article  PubMed  CAS  Google Scholar 

  73. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997; 12:641-651.

    Article  PubMed  CAS  Google Scholar 

  74. Dickenson RP, Hutton WC, Stott JR. The mechanical properties of bone in osteoporosis. J Bone Joint Surg Br. 1981;63:233-238.

    PubMed  Google Scholar 

  75. Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int. 1997;60:265-270.

    Article  PubMed  CAS  Google Scholar 

  76. Kasra M, Grynpas MD. Effect of long-term ovariectomy on bone mechanical properties in young female cynomolgus monkeys. Bone. 1994;15:557-561.

    Article  PubMed  CAS  Google Scholar 

  77. Lill CA, Gerlach UV, Eckhardt C, Goldhahn J, Schneider E. Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int. 2002;13:407-414.

    Article  PubMed  CAS  Google Scholar 

  78. Vanderschueren D, Van Herck E, Schot P, et al. The aged male rat as a model for human osteoporosis: evaluation by nondestructive measurements and biomechanical testing. Calcif Tissue Int. 1993;53:342-347.

    Article  PubMed  CAS  Google Scholar 

  79. Mosekilde L, Danielsen CC, Knudsen U. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone. 1993;14:1-6.

    Article  PubMed  CAS  Google Scholar 

  80. Peng Z, Tuukkanen J, Zhang H, Jamsa T, Vaananen HK. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone. 1994;15:523-532.

    Article  PubMed  CAS  Google Scholar 

  81. Silva MJ, Brodt MD, Uthgenannt BA. Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senile osteoporosis. Bone. 2004;35:425-431.

    Article  PubMed  Google Scholar 

  82. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res. 2002;17:1597-1603.

    Article  PubMed  Google Scholar 

  83. Niedhart C, Braun K, Graf Stenbock-Fermor N, et al. The value of peripheral quantitative computed tomography (pQCT) in the diagnosis of osteoporosis. Z Orthop Ihre Grenzgeb. 2003;141:135-142.

    Article  PubMed  CAS  Google Scholar 

  84. Simmons A, Simpson DE, O’Doherty MJ, Barrington S, Coakley AJ. The effects of standardization and reference values on patient classification for spine and femur ­dual-energy X-ray absorptiometry. Osteoporos Int. 1997;7:200-206.

    Article  PubMed  CAS  Google Scholar 

  85. Balena R, Toolan BC, Shea M, et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest. 1993; 92:2577-2586.

    Article  PubMed  CAS  Google Scholar 

  86. Shen V, Dempster DW, Birchman R, et al. Lack of changes in histomorphometric, bone mass, and biochemical parameters in ovariohysterectomized dogs. Bone. 1992;13:311-316.

    Article  PubMed  CAS  Google Scholar 

  87. Bagi CM, Ammann P, Rizzoli R, Miller SC. Effect of estrogen deficiency on cancellous and cortical bone structure and strength of the femoral neck in rats. Calcif Tissue Int. 1997;61:336-344.

    Article  PubMed  CAS  Google Scholar 

  88. Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Histol Histopathol. 2004;19:677-685.

    PubMed  CAS  Google Scholar 

  89. Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF. A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner. 1990;11:217-235.

    Article  PubMed  CAS  Google Scholar 

  90. Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16:277S-284S.

    PubMed  CAS  Google Scholar 

  91. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K. Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone. 2002;30:594-598.

    Article  PubMed  CAS  Google Scholar 

  92. Feik SA, Thomas CD, Clement JG. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat. 1997;191:407-416.

    Article  PubMed  Google Scholar 

  93. Ritzel H, Amling M, Posl M, Hahn M, Delling G. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res. 1997;12:89-95.

    Article  PubMed  CAS  Google Scholar 

  94. Burr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM. Intermittently administered human parathyroid hormone (1–34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001;16:157-165.

    Article  PubMed  CAS  Google Scholar 

  95. Chavassieux P, Garnero P, Duboeuf F, et al. Effects of a new selective estrogen receptor modulator (MDL 103, 323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res. 2001;16:89-96.

    Article  PubMed  CAS  Google Scholar 

  96. Wilson AK, Bhattacharyya MH, Miller S, Mani A, Sacco-Gibson N. Ovariectomy-induced changes in aged beagles: histomorphometry of rib cortical bone. Calcif Tissue Int. 1998;62:237-243.

    Article  PubMed  CAS  Google Scholar 

  97. Lauritzen DB, Balena R, Shea M, et al. Effects of combined prostaglandin and alendronate treatment on the histomorphometry and biomechanical properties of bone in ovariectomized rats. J Bone Miner Res. 1993;8:871-879.

    Article  PubMed  CAS  Google Scholar 

  98. Chen H, Zhou X, Emura S, Shoumura S. Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol. 2009;44:792-798.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg H. Holstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Holstein, J.H. et al. (2011). Mouse models for the Study of Fracture Healing and Bone Regeneration. In: Duque, G., Watanabe, K. (eds) Osteoporosis Research. Springer, London. https://doi.org/10.1007/978-0-85729-293-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-293-3_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-292-6

  • Online ISBN: 978-0-85729-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics