Skip to main content

Fault Tolerant Control and Fault Detection and Isolation

  • Chapter

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter formally provides a definition of the terms fault and failure and briefly discusses the different types of faults and failures which can occur in actuators and sensors—with specific aircraft examples. The chapter introduces the concept of fault tolerant control and gives a general overview of the different FTC and FDI research fields. The main concepts and strategies behind some of the FTC and FDI schemes in the literature are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A blowdown limit is an aerodynamic limit of the control surface deflection at a specified speed which overpowers the movement of the actuator. The blowdown limits might not be the maximum physical deflection of the control surface. Any deflection above the blowdown limit can cause structural damage [240] as it imposes the maximum physical and structural limit the control surface and the surrounding structure can have.

  2. 2.

    Sensors, most of the time, provide measurements in terms of current or voltage and therefore require transformation to represent the actual physical meaning of the quantities being measured.

  3. 3.

    In terms of linear methods, system faults are the ones that affect the A matrix i.e., airframe or wing damage.

References

  1. In-flight upset; 240 km NW Perth, WA; Boeing Co 777-200, 9M-MRG. Aviation safety investigation report—Final 200503722, Australian Transport Safety Bureau (2005)

    Google Scholar 

  2. The transportation safety board of Canada issues safety recommendations to improve rudder inspections on Airbus aircraft. Communiqués TSB # A04/2006 A05F0047, Transportation Safety Board of Canada (2006)

    Google Scholar 

  3. An, Y.H.: A design of fault tolerant flight control systems for sensor and actuator failures using online learning neural networks. Ph.D. thesis, West Virginia University (1998)

    Google Scholar 

  4. Anand, M.D., Selvaraj, T., Kumanan, S., Janarthanan, J.: A hybrid fuzzy logic artificial neural network algorithm-based fault detection and isolation for industrial robot manipulators. Int. J. Manuf. Res. 2(3), 279–302 (2007)

    Google Scholar 

  5. Anon: Uncontrolled descent and collision with terrain, USAIR flight 427, Boeing 737-300, N513AU, near Aliquippa, Pennsylvania September 8, 1994. Aircraft accident report NTSB/AAR-99-01, National Transportation Safety Board (1994)

    Google Scholar 

  6. Aravena, J., Zhou, K., Li, X.R., Chowdhury, F.: Fault tolerant safe flight controller bank. In: Proceedings of the IFAC Symposium SAFEPROCESS ’06, Beijing, China, pp. 807–812 (2006)

    Google Scholar 

  7. Armeni, S., Casavola, A., Mosca, E.: Robust fault detection and isolation for LPV systems under a sensitivity constraint. Int. J. Adapt. Control Signal Process. 23, 55–72 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Åström, K.J., Wittenmark, B.: Computer Controlled Systems: Theory and Design. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

  9. Åström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Balas, G.J.: Linear, parameter-varying control and its application to a turbofan engine. Int. J. Robust Nonlinear Control 12, 763–796 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Beck, R.E.: Application of control allocation methods to linear systems with four or more objectives. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2002)

    Google Scholar 

  12. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-tolerant Control, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault-tolerant control. In: Proceedings of the American Control Conference, Arlington, TX, USA, pp. 2606–2020 (2001)

    Google Scholar 

  14. Bocaniala, C.D., Palade, V.: Computational Intelligence Methodologies in Fault Diagnosis: Review and State of the Art. Springer, Berlin (2006)

    Google Scholar 

  15. Bokor, J., Balas, G.: Detection filter design for LPV systems—a geometric approach. Automatica 40, 511–518 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Bokor, J., Szabo, Z., Stikkel, G.: Failure detection for quasi LPV systems. In: IEEE Conference on Decision and Control, Maui, Hawaii, USA (2002)

    Google Scholar 

  17. Bordignon, K.A., Durham, W.C.: Closed-form solutions to constrained control allocation problem. J. Guid. Control Dyn. 18(5), 1000–1007 (1995)

    Google Scholar 

  18. Bošković, J.D., Mehra, R.K.: A multiple model-based reconfigurable flight control system design. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4503–4508 (1998)

    Google Scholar 

  19. Bošković, J.D., Mehra, R.K.: Control allocation in overactuated aircraft under position and rate limiting. In: Proceedings of the American Control Conference, Anchorage, AL, USA, pp. 791–796 (2002)

    Google Scholar 

  20. Bošković, J.D., Mehra, R.K.: Failure detection, identification and reconfiguration in flight control. In: Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances. Springer, Berlin (2002)

    Google Scholar 

  21. Brière, D., Favre, C., Traverse, P.: A family of fault-tolerant systems: electrical flight controls, from Airbus A320/330/340 to future military transport aircraft. Microprocess. Microsyst. 19, 75–82 (1995)

    Google Scholar 

  22. Brière, D., Traverse, P.: Airbus A320/A330/A340 electrical flight controls: A family of fault-tolerant systems. Digest of papers FTCS-23 the twenty-third International Symposium on Fault-Tolerant Computing, Toulouse, France, pp. 616–623 (1993)

    Google Scholar 

  23. Buffington, J.: Tailless aircraft control allocation. In: AIAA Guidance, Navigation and Control, pp. 737–747 (1997)

    Google Scholar 

  24. Buffington, J., Chandler, P., Pachter, M.: Online system identification for aircraft with distributed control effectors. Int. J. Robust Nonlinear Control 9, 1033–1049 (1999)

    Google Scholar 

  25. Buffington, J.M., Enns, D.F.: Lyapunov stability analysis of daisy chain control allocation. J. Guid. Control Dyn. 19, 1226–1230 (1996)

    MATH  Google Scholar 

  26. Burcham, F.W., Fullertron, C.G., Maine, T.A.: Manual manipulation of engine throttles for emergency flight control. Technical report NASA/TM-2004-212045, NASA (2004)

    Google Scholar 

  27. Burcham, F.W., Maine, T.A., Burken, J., Bull, J.: Using engine thrust for emergency flight control: MD-11 and B-747 results. Technical memorandum NASA/TM-1998-206552, NASA (1998)

    Google Scholar 

  28. Caccavale, F., Villani, L.: Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances. Springer, New York (2003)

    MATH  Google Scholar 

  29. Campo, P.J., Morari, M., Nett, C.N.: Multivariable anti-windup and bumpless-transfer: A general theory. In: Proceedings of the American Control Conference, Pittsburgh, PA, USA, pp. 1706–1711 (1989)

    Google Scholar 

  30. Cattarius, J., Inman, D.J.: Experimental verification of intelligent fault detection in rotor blades. Int. J. Syst. Sci. 31(11), 1375–1379 (2000)

    MATH  Google Scholar 

  31. Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic, Norwell (1999)

    MATH  Google Scholar 

  32. Chen, W., Jiang, J.: Fault-tolerant control against stuck actuator faults. IEE Proc., Control Theory Appl. 152, 138–146 (2005)

    MathSciNet  Google Scholar 

  33. Chu, Q.P., Mulder, J.A., Sridhar, J.K.: Decomposition of aircraft state and parameter estimation problems. In: 10th IFAC Symposium on System Identification, Copenhagen, Denmark (1995)

    Google Scholar 

  34. Davidson, J.B., Lallman, F.J., Bundick, W.T.: Real-time adaptive control allocation applied to a high performance aircraft. In: 5th SIAM Conference on Control & Its Application, San Diego, CA, USA (2001)

    Google Scholar 

  35. Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms and Tools. Springer, Berlin (2008)

    Google Scholar 

  36. Ducard, G.J.J.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Advances in Industrial Control Series. Springer, Berlin (2009)

    Google Scholar 

  37. Dumont, G.A., Huzmezan, M.: Concepts, methods and techniques in adaptive control. In: Proceedings of the American Control Conference, Anchorage, AK, USA, pp. 1137–1150 (2002)

    Google Scholar 

  38. Durham, W.C.: Constrained control allocation. J. Guid. Control Dyn. 16(4), 717–25 (1993)

    Google Scholar 

  39. Eberhardt, R.L., Ward, D.G.: Indirect adaptive flight control system interactions. Int. J. Robust Nonlinear Control 9, 1013–1031 (1999)

    Google Scholar 

  40. Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: A Benchmark Challenge vol. 399. Springer, Berlin (2010)

    Google Scholar 

  41. Edwards, C., Postlethwaite, I.: Anti-windup and bumpless-transfer schemes. Department of engineering report 96-5-Feb, Leicester University (1996)

    Google Scholar 

  42. Enns, D.: Control allocation approaches. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Boston, MA, pp. 98–108 (1998)

    Google Scholar 

  43. Fisher, J.R.: Aircraft control using nonlinear dynamic inversion in conjunction with adaptive robust control. Master of Science Thesis, Texas A&M University (2004)

    Google Scholar 

  44. Forssell, L., Nilsson, U.: ADMIRE, the aero-data model in a research environment version 4.0, model description. Technical report FOI-R-1624-SE, Swedish Defence Agency (FOI) (2005)

    Google Scholar 

  45. Frank, P.M., Ding, X.: Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis. Automatica 30, 789–804 (1994)

    MATH  Google Scholar 

  46. Ganguli, S., Marcos, A., Balas, G.J.: Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. In: American Control Conference, Anchorage, AK, USA, pp. 3612–3617 (2002)

    Google Scholar 

  47. Gao, Z., Antsaklis, P.J.: Stability of the pseudo–inverse method for reconfigurable control. Int. J. Control 53(3), 717–729 (1991)

    MathSciNet  MATH  Google Scholar 

  48. Garcia-Velo, J., Walker, B.K.: Aerodynamic parameter estimation for high-performance aircraft using extended Kalman filtering. J. Guid. Control Dyn. 20, 1257–9 (1997)

    Google Scholar 

  49. Gero, D.: Aviation Disasters: The World’s Major Civil Airliner Crashes Since 1950. Patrick Stephens, Sparkford (2006)

    Google Scholar 

  50. Gopinathan, M., Bošković, J.D., Mehra, R.K., Rago, C.: A multiple model predictive scheme for fault-tolerant flight control design. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 1376–1381 (1998)

    Google Scholar 

  51. Goupil, P.: AIRBUS state of the art and practices on FDI and FTC. In: Proceedings of the IFAC Symposium SAFEPROCESS ’09, Barcelona, Spain, pp. 564–572 (2009)

    Google Scholar 

  52. Grenaille, S., Henry, D., Zolghadri, A.: A method for designing fault diagnosis filters for LPV polytopic systems. J. Control Sci. Eng. 2008, 1–11 (2008). doi:10.1155/2008/231697

    Google Scholar 

  53. Gunnarsson, M.: Parameter estimation for fault diagnosis of an automotive engine using extended Kalman filters. Master Thesis, Linköpings University (2001)

    Google Scholar 

  54. Hallouzi, R., Verdult, V., Babuska, R., Verhaegen, M.: Fault detection and identification of actuator faults using linear parameter varying models. In: IFAC World Congress, Prague, Czech Republic, pp. 119–124 (2005)

    Google Scholar 

  55. Härkegård, O.: Backstepping and control allocation with applications to flight control. PhD thesis, Division of Automatic Control, Department of Electrical Engineering Linköping University, Sweden (2003)

    Google Scholar 

  56. Härkegård, O., Glad, S.T.: Resolving actuator redundancy—optimal control vs. control allocation. Automatica 41(1), 137–144 (2005)

    MathSciNet  MATH  Google Scholar 

  57. Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid. Control Dyn. 26, 452–462 (2003)

    Google Scholar 

  58. Hou, M., Patton, R.P.: An LMI approach to \({\mathcal{H}}_{-}\)/\({\mathcal{H}}_{\infty}\) fault detection observers. In: Proceedings of the UKACC International Conference on Control, Exeter, UK, pp. 305–310 (1996)

    Google Scholar 

  59. Huber, R.R., McCulloch, B.: Self-repairing flight control system. Society of automotive engineers technical paper, series 841552, 1–20 (1984)

    Google Scholar 

  60. Huzmezan, M., Maciejowski, J.: Reconfigurable flight control methods and related issues—a survey. Technical report prepared for the DERA under the research agreement No. ASF/3455, University of Cambridge (1997)

    Google Scholar 

  61. Idan, M., Johnson, M., Calise, A.J.: Intelligent aerodynamic/propulsion flight control for flight safety: a nonlinear adaptive approach. In: Proceedings of the American Control Conference, Arlington, VA, USA, pp. 2918–2923 (2001)

    Google Scholar 

  62. Isermann, R.: Model-based fault-detection and diagnosis—status and applications. Annu. Rev. Control 29, 71–85 (2005)

    Google Scholar 

  63. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin (2006)

    Google Scholar 

  64. Isermann, R., Balle, P.: Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5, 709–719 (1997)

    Google Scholar 

  65. Ito, D., Georgie, J., Vasalek, J., Ward, D.T.: Re-entry vehicle flight control design guidelines: dynamic inversion. Technical report NASA/TP-2002-210771, NASA (2002)

    Google Scholar 

  66. Ito, D., Vasalek, J., Ward, D.T.: Robust dynamic inversion controller design and analysis for the X-38. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2001)

    Google Scholar 

  67. Jiang, B., Chowdhury, F.N.: Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13, 493–9 (2005)

    Google Scholar 

  68. Jones, C.N.: Reconfigurable flight control: First year report. Technical report, Cambridge University Engineering Department (2005)

    Google Scholar 

  69. Joosten, D.A., van den Boom, T.J.J., Lombaerts, T.J.J.: Effective control allocation in fault-tolerant flight control using feedback linearization and model predictive control. In: European Control Conference (2007)

    Google Scholar 

  70. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Google Scholar 

  71. Kalman, R.E., Bucy, R.S.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 83, 95–108 (1961)

    MathSciNet  Google Scholar 

  72. Kanev, S., Verhaegen, M.: Controller reconfiguration for non-linear systems. Control Eng. Pract. 8, 1223–35 (2000)

    Google Scholar 

  73. Keller, J.Y., Darouach, M.: Optimal two-stage Kalman filter in the presence of random bias. Automatica 33, 1745–8 (1997)

    MathSciNet  Google Scholar 

  74. Keller, J.Y., Darouach, M.: Two-stage Kalman estimator with unknown exogenous inputs. Automatica 35, 339–342 (1999)

    MATH  Google Scholar 

  75. Khong, T.H., Shin, J.: Robustness analysis of integrated LPV-FDI filters and LTI-FTC system for a transport aircraft. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, pp. 4166–4187 (2007)

    Google Scholar 

  76. Kleeman, L.: Understanding and applying Kalman filtering. In: Proceedings of the Second Workshop on Perceptive Systems, Perth, Australia (1996)

    Google Scholar 

  77. Kobayashi, T., Simon, D.L.: Application of a bank of Kalman filters for aircraft engine fault diagnostics. Technical report NASA/TM-2003-212526, NASA (2003)

    Google Scholar 

  78. Kobayashi, T., Simon, D.L.: Evaluation of an enhanced bank of Kalman filters for in-flight aircraft engine sensor fault diagnostics. J. Eng. Gas Turbine Power 127, 497–504 (2005)

    Google Scholar 

  79. Korbicz, J., Koscielny, J.M., Kowalczuk, Z., Cholewa, W.: Fault Diagnosis: Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  80. Kowal, M., Korbicz, J.: Robust fault detection using neuro-fuzzy networks. In: IFAC World Congress, Prague, Czech Republic, pp. 185–190 (2005)

    Google Scholar 

  81. Kwon, W.H., Kim, P.S., Park, P.G.: A receding horizon Kalman fir filter for linear continuous-time systems. IEEE Trans. Autom. Control 44, 2115–20 (1999)

    MathSciNet  MATH  Google Scholar 

  82. Li, R., Olson, J.H.: Fault detection and diagnosis in a closed-loop nonlinear distillation process. application of extended Kalman filters. Ind. Eng. Chem. Res. 30, 898–908 (1991)

    Google Scholar 

  83. Lira, S.D., Puig, V., Quevedo, J.: PEM fuel cell system robust LPV model-based fault diagnosis. In: The 20th International Workshop on Principles of Diagnosis, Stockholm, Sweden (2009)

    Google Scholar 

  84. Liu, G.: Control of robots manipulators with consideration of actuators degradation and failures. In: IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, pp. 2256–2571 (2001)

    Google Scholar 

  85. Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Real time damaged aircraft model identification for reconfiguring flight control. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, SC, USA, pp. 1207–1231 (2007)

    Google Scholar 

  86. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002)

    Google Scholar 

  87. Maciejowski, J.M., Jones, C.N.: MPC fault-tolerant control case study: flight 1862. In: Proceedings of the IFAC Symposium SAFEPROCESS ’03, WA, USA, pp. 119–124 (2003)

    Google Scholar 

  88. Magni, J.F., Bennani, S., Terlouw, J.: Robust Flight Control: A Design Challenge. Springer, Berlin (1997)

    MATH  Google Scholar 

  89. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems Stochastic Analysis and Synthesis. Springer, Berlin (2003)

    MATH  Google Scholar 

  90. Maine, R.E., Iliff, K.W.: Formulation of a practical algorithm for parameter estimation with process and measurement noise. In: Identification and System Parameter Estimation 1982. Proceedings of the Sixth IFAC Symposium, Washington, USA (1983)

    Google Scholar 

  91. Maine, R.E., Iliff, K.W.: Agardograph 300 flight test technique series: vol. 3 on identification of dynamic systems—applications to aircraft. Part 1: The output error approach. Technical report AGARD-AG-300 vol. 3 Part 1, NATO (1986)

    Google Scholar 

  92. Marcos, A., Balas, G.J.: A robust integrated controller/diagnosis aircraft application. Int. J. Robust Nonlinear Control 15(12), 531–551 (2005)

    MathSciNet  MATH  Google Scholar 

  93. Marcos, A., Ganguli, S., Balas, G.J.: An application of H fault detection and isolation to a transport aircraft. Control Eng. Pract. 13(1), 105–119 (2005)

    Google Scholar 

  94. Maybeck, P.S.: Stochastic models, estimation, and control. In: Mathematics in Science and Engineering, vol. 141. Academic Press, New York (1979)

    Google Scholar 

  95. McLean, D., Aslam-Mir, S.: Reconfigurable flight control systems. In: International Conference on Control ’91 (Conf. Publ. No. 332), pp. 234–242 (1991)

    Google Scholar 

  96. Mirea, L., Patton, R.J.: Component fault diagnosis using wavelet neural networks with local recurrent structure. In: Proceedings of the IFAC Symposium SAFEPROCESS ’06, Beijing, China, pp. 91–96 (2006)

    Google Scholar 

  97. Mirea, L., Patton, R.J.: A new dynamic neuro-fuzzy system applied to fault diagnosis of an evaporation station. In: Proceedings of the IFAC Symposium SAFEPROCESS ’06, Beijing, China, pp. 253–258 (2006)

    Google Scholar 

  98. Mulder, J.A., Chu, Q.P., Sridhar, J.K., Breeman, J.H., Laban, M.: Non-linear aircraft flight path reconstruction review and new advances. Prog. Aerosp. Sci. 35, 673–726 (1999)

    Google Scholar 

  99. Mulder, J.A., Sridhar, J.K., Breeman, J.H.: Agardograph 300 flight test technique series: vol. 3 on identification of dynamic systems—applications to aircraft. Part 2: Nonlinear analysis and manoeuvre design. Technical report AGARD-AG-300 vol. 3 Part 2, NATO (1994)

    Google Scholar 

  100. Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42, 171–187 (1997)

    MathSciNet  MATH  Google Scholar 

  101. Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control using multiple models. Int. J. Adapt. Control Signal Process. 17, 87–102 (2003)

    MATH  Google Scholar 

  102. Ni, L., Fuller, C.R.: Control reconfiguration based on hierarchical fault detection and identification for unmanned underwater vehicle. J. Vib. Control 9, 753–748 (2003)

    Google Scholar 

  103. Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Mathematics in Science and Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  104. de Oca, S.M., Puig, V., Theilliol, D., Tornil-Sin, S.: Fault-tolerant control design using LPV admissible model matching: application to a two-degree of freedom helicopter. In: 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece, pp. 522–527 (2009)

    Google Scholar 

  105. Oliveira, J., Chu, Q.P., Mulder, J.A., Balini, H.M.N.K., Vos, W.G.M.: Multi-input design for aerodynamic parameter estimation. In: AIAA Guidance, Navigation, and Control Conference (2005)

    Google Scholar 

  106. Oppenheimer, M.W., Doman, D.B.: Control allocation for overactuated systems. Technical report AFRL-VA-WP-TP-2006-321, Air Force Research Laboratory (2006)

    Google Scholar 

  107. Papageorgiou, G., Glover, K., D’Mello, D., Patel, Y.: Taking robust LPV control into flight on the VAAC harrier. In: 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 4558–4564 (2000)

    Google Scholar 

  108. Patton, R.J.: Fault tolerant control: the 1997 situation. In: Proceedings of the IFAC Symposium—SAFEPROCESS ’97, Hull, UK, pp. 1035–1055 (1997)

    Google Scholar 

  109. Patton, R.J., Chen, J., Benkhedda, H.: A study on neuro-fuzzy systems for fault diagnosis. Int. J. Syst. Sci. 31(11), 1441–1448 (2000)

    MATH  Google Scholar 

  110. Patton, R.J., Korbicz, J.: Advances in computational intelligence for fault diagnosis systems. Special issue of International Journal of Applied Mathematics and Computer Science 9(3) (1999)

    Google Scholar 

  111. Patton, R.J., Uppal, F.J., Lopez-Toribio, C.J.: soft computing approaches to fault diagnosis for dynamic systems: a survey. In: Proceedings of the IFAC Symposium SAFEPROCESS ’00, Budapest, Hungary, pp. 298–311 (2000)

    Google Scholar 

  112. Polycarpou, M.M., Vemuri, A.T.: Learning methodology for failure detection and accommodation. IEEE Control Syst. Mag. 15(3), 16–24 (1995)

    Google Scholar 

  113. Puig, V., Witczak, M., Nejjari, F., Quevedo, J., Korbicz, J.: A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test. Eng. Appl. Artif. Intell. 20(7), 886–897 (2007)

    Google Scholar 

  114. Rago, C., Prasanth, R., Mehra, R.K., Fortenbaugh, R.: Failure detection and identification and fault tolerant control using the IMM-KF with applications to the eagle-eye UAV. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4208–4213 (1998)

    Google Scholar 

  115. Rodrigues, M., Theilliol, D., Aberkane, S., Sauter, D.: Fault tolerant control design for polytopic LPV systems. Int. J. Appl. Math. Comput. Sci. 17, 27–37 (2007)

    MathSciNet  MATH  Google Scholar 

  116. Shamma, J.S., Cloutier, J.R.: Gain-scheduled missile autopilot design using linear parameter varying transformations. J. Guid. Control Dyn. 16(2), 256–261 (1993)

    Google Scholar 

  117. Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 219(4), 321–328 (2005),

    Google Scholar 

  118. Shin, J., Belcastro, C.M.: Performance analysis on fault tolerant control system. IEEE Trans. Control Syst. Technol. 14, 920–925 (2006)

    Google Scholar 

  119. Shin, J., Wu, N.E., Belcastro, C.: Adaptive linear parameter varying control synthesis for actuator failure. J. Guid. Control Dyn. 27, 787–794 (2004)

    Google Scholar 

  120. Shtessel, Y., Buffington, J., Banda, S.: Multiple time scale flight control using re-configurable sliding modes. J. Guid. Control Dyn. 22, 873–883 (1999)

    Google Scholar 

  121. Shtessel, Y., Buffington, J., Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes. IEEE Trans. Control Syst. Technol. 10(2), 288–296 (2002)

    Google Scholar 

  122. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  123. Smaili, M.H.: Flightlab 747: Benchmark for advance flight control engineering. Technical report, Technical University Delft, The Netherlands, 1999

    Google Scholar 

  124. Smaili, M.H., Breeman, J., Lombaerts, T.J.J., Joosten, D.A.: A simulation benchmark for integrated fault tolerant flight control evaluation. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, CO, USA, pp. 563–585 (2006)

    Google Scholar 

  125. Smaili, M.H., Mulder, J.A.: Flight data reconstruction and simulation of the 1992 Amsterdam Bijlmermeer airplane accident. In: AIAA Modeling and Simulation Technologies Conference, Denver, CO, USA, 2000

    Google Scholar 

  126. Snell, S.A., Enns, D.F., Garrard Jr., W.L.: Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control Dyn. 15, 976–984 (1992)

    Google Scholar 

  127. Sorenson, H.W.: Kalman Filtering: Theory and Application. IEEE Press, New York (1985)

    Google Scholar 

  128. Spirkovska, L., Iverson, D.L., Poll, S., Pryor, A.: Inductive learning approaches for improving pilot awareness of aircraft faults. Technical report 20060017823, NASA (2005)

    Google Scholar 

  129. Stengel, R.F.: Flight Dynamics. Princeton University Press, Princeton (2004)

    Google Scholar 

  130. Szaszi, I., Ganguli, S., Marcos, A., Balas, G.J., Bokor, J.: Application of FDI to a nonlinear Boeing-747 aircraft. In: Mediterranean Conference on Control and Automation, Lisbon, Portugal (2002)

    Google Scholar 

  131. Szaszi, I., Marcos, A., Balas, G.J., Bokor, J.: Linear parameter-varying detection filter design for a Boeing 747-100/200 aircraft. J. Guid. Control Dyn. 28(3), 461–470 (2005)

    Google Scholar 

  132. Tan, C.P.: Sliding mode observers for fault detection and isolation. Ph.D. thesis, University of Leicester, 2002

    Google Scholar 

  133. Tournes, C., Landrum, D.B., Shtessel, Y., Hawk, C.W.: Ramjet-powered re-usable vehicle control by sliding modes. J. Guid. Control Dyn. 21(3), 409–415 (1998)

    Google Scholar 

  134. Uppal, F.J., Patton, R.J., Witczak, M.: A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem. Control Eng. Pract. 14, 699–717 (2006)

    Google Scholar 

  135. van der Linden, C.A.A.M., Sridhar, J.K., Mulder, J.A.: Multi-input design for aerodynamic parameter estimation. In: Proceedings of the American Control Conference, Seattle, WA, USA, pp. 703–707 (1995)

    Google Scholar 

  136. Verhaegen, M., Kanev, S., Hallouzi, R., Jones, C., Maciejowski, J., Smail, H.: Fault tolerant flight control—a survey. In: Fault Tolerant Flight Control: A Benchmark Challenge, vol. 399, pp. 46–89. Springer, Berlin (2010)

    Google Scholar 

  137. Vetter, T.K., Wells, S.R., Hess, R.A.: Designing for damage-robust flight control design using sliding mode techniques. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 217, 245–261 (2003)

    Google Scholar 

  138. Wei, X., Verhaegen, M.: Mixed \(\mathcal{H}_{-}/\mathcal{H}_{\infty}\) fault detection observer design for LPV systems. In: IEEE Conference on Decision and Control, Cancun, Mexico, pp. 1073–1078 (2008)

    Google Scholar 

  139. Wells, S.R., Hess, R.A.: Multi-input/multi-output sliding mode control for a tailless fighter aircraft. J. Guid. Control Dyn. 26(3), 463–473 (2003)

    Google Scholar 

  140. Witczak, M.: Advances in model-based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Appl. Math. Comput. Sci. 16(1), 85–99 (2006)

    MathSciNet  Google Scholar 

  141. Wu, F.: A generalized LPV system analysis and control synthesis framework. Int. J. Control 74, 745–759 (2001)

    MATH  Google Scholar 

  142. Wu, N.E., Zhang, Y., Zhou, K.: Control effectiveness estimation using an adaptive Kalman estimator. In: Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) Held Jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intelligent Systems and Semiotics (ISAS), Gaithersburg, MD, USA, pp. 181–186 (1998)

    Google Scholar 

  143. Wu, N.E., Zhang, Y., Zhou, K.: Detection, estimation, and accommodation of loss of control effectiveness. Int. J. Adapt. Control Signal Process. 14, 775–95 (2000)

    MATH  Google Scholar 

  144. Yang, Z., Blanke, M., Verhaegen, M.: Robust control mixer method for reconfigurable control design using model matching. IET Control Theory Appl. 1, 349–357 (2007)

    MathSciNet  Google Scholar 

  145. Yu, D.L., Gomm, J.B.: Implementation of neural network predictive control to a multivariable chemical reactor. Control Eng. Pract. 11(11), 1315–1323 (2003)

    Google Scholar 

  146. Zhang, Y., Jiang, J.: Design of integrated fault detection, diagnosis and reconfigurable control systems. In: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, USA, pp. 3587–3592 (1999)

    Google Scholar 

  147. Zhang, Y., Jiang, J.: Integrated active fault-tolerant control using IMM approach. IEEE Trans. Aerosp. Electron. Syst. 37, 1221–1235 (2001)

    Google Scholar 

  148. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault tolerant control systems. In: Proceedings of the IFAC Symposium SAFEPROCESS ’03, WA, USA, pp. 265–276 (2003)

    Google Scholar 

  149. Zhang, Y., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39, 838–848 (2003)

    Google Scholar 

  150. Zhang, Y., Jiang, J.: Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control systems. In: Proceedings of the IFAC Symposium SAFEPROCESS ’06, Beijing, China, pp. 1437–1448 (2006)

    Google Scholar 

  151. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)

    Google Scholar 

  152. Zhang, Y., Suresh, V.S., Jiang, B., Theilliol, D.: Reconfigurable control allocation against aircraft control effector failures. In: IEEE International Conference on Control Applications, pp. 1197–1202 (2007)

    Google Scholar 

  153. Zhang, Y.M., Jiang, J.: Active fault-tolerant control system against partial actuator failures. IEE Proc., Control Theory Appl. 149, 95–104 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halim Alwi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Alwi, H., Edwards, C., Tan, C.P. (2011). Fault Tolerant Control and Fault Detection and Isolation. In: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-650-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-650-4_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-649-8

  • Online ISBN: 978-0-85729-650-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics