Skip to main content

Preference Vector Ant Colony System for Minimising Make-span and Energy Consumption in a Hybrid Flow Shop

  • Chapter
  • First Online:
Multi-objective Evolutionary Optimisation for Product Design and Manufacturing

Abstract

Traditionally, scheduling problems usually deal with the objectives related to production efficiency (e.g., the make-span, the total completion time, the maximum lateness and the number of tardy jobs). However, sustainable manufacturing should minimise the energy consumption during production process. Energy consumption not only constitutes a major portion of total production cost but also results in significant environmental effects. In this chapter, we discuss a multi-objective scheduling problem in a hybrid flow shop. Two objectives considered in the proposed model are to minimise make-span and energy consumption. These two objectives are often in conflict with each other. A Preference Vector Ant Colony System (PVACS) is developed to search for a set of Pareto-optimal solutions using meta-heuristics for multi-objective optimisation. PVACS allows the search in the solution space to focus on the specific areas which are of particular interest to decision-makers, instead of searching for the entire Pareto frontier. This is achieved by maintaining a separate pheromone matrix for each objective, respectively and assigning each ant a preference vector that represents the preference between the two objectives of the decision-makers. The performance of PVACS was compared to two well-known multi-objective genetic algorithms: SPEA2 and NSGA-II. The experimental results show that PVACS outperforms the other two algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.N. Environment Programme. (2010). Green economy report: a preview.

    Google Scholar 

  2. Institute, T. M. (2009). The facts about modern manufacturing (8th ed.).

    Google Scholar 

  3. US Department of Commerce, E.a.S.A. (2010). Measuring the green economy.

    Google Scholar 

  4. http://www.eia.doe.gov/emeu/aer/consump.html.

  5. Tacconi, L. (2000). Biodiversity and ecological economics: Participation, values, and resource management. London: Earthscan/James & James.

    Google Scholar 

  6. US Energy Information Administration. (2009). International Energy Outlook 2009

    Google Scholar 

  7. Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45, 4247–4271.

    Article  MATH  Google Scholar 

  8. Lei, D. M. (2009). Multi-objective production scheduling: a survey. International Journal of Advanced Manufacturing Technology, 43(9–10), 926–938.

    Article  Google Scholar 

  9. Ross, M. (1992). Efficient energy use in manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 89(3), 827–831.

    Article  Google Scholar 

  10. Park, S. H., Dissmann, B., & Nam, K. Y. (1993). A cross-country decomposition analysis of manufacturing energy-consumption. Energy, 18(8), 843–858.

    Article  Google Scholar 

  11. Fromme, J. W. (1996). Energy conservation in the Russian manufacturing industry—Potentials and obstacles. Energy Policy, 24(3), 245–252.

    Article  Google Scholar 

  12. Golove, W. H., & Schipper, L. J. (1996). Long-term trends in US manufacturing energy consumption and carbon dioxide emissions. Energy, 21(7–8), 683–692.

    Article  Google Scholar 

  13. Adenikinju, A. F. (1998). Productivity growth and energy consumption in the Nigerian manufacturing sector: A panel data analysis. Energy Policy, 26(3), 199–205.

    Article  Google Scholar 

  14. Bentzen, J. (2004). Estimating the rebound effect in US manufacturing energy consumption. Energy Economics, 26(1), 123–134.

    Article  Google Scholar 

  15. Draganescu, F., Gheorghe, M., & Doicin, C. V. (2003). Models of machine tool efficiency and specific consumed energy. Journal of Materials Processing Technology, 141(1), 9–15.

    Article  Google Scholar 

  16. Dietmair, A., & Verl, A. (2009). Energy consumption forecasting and optimization for tool machines. Modern Machinery Science Journal, 62–67.

    Google Scholar 

  17. Herrmann, C., & Thiede, S. (2009). Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology, 1(4), 221–229.

    Article  Google Scholar 

  18. Wolters, W. T. M., Lambert, A. J. D., & Claus, J. (1995). Sequencing problems in designing energy efficient production systems. International Journal of Production Economics, 41(1–3), 405–410.

    Article  Google Scholar 

  19. Park, C. W., et al. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173.

    Article  Google Scholar 

  20. Fonseca, C., & Fleming, P. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1), 1–16.

    Article  Google Scholar 

  21. Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

    Article  Google Scholar 

  22. Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100

    Google Scholar 

  23. Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-wesley.

    MATH  Google Scholar 

  24. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.

    Article  Google Scholar 

  25. Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (pp. 418)

    Google Scholar 

  26. Fonseca, C., Fleming, P. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423

    Google Scholar 

  27. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  28. Rudolph, G., & Agapie, A. (2000). Convergence properties of some multi-objective evolutionary algorithms. In Proceedings of the 2000 Congress on Evolutionary Computation (Vols 1 and 2, pp. 1010–1016)

    Google Scholar 

  29. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100

    Google Scholar 

  30. Knowles, J., & Corne, D. (2000). Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8(2), 149–172.

    Article  Google Scholar 

  31. Deb, K., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  MathSciNet  Google Scholar 

  32. Chaudhuri, S., & Deb, K. (2010). An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing, 10(2), 496–511.

    Article  Google Scholar 

  33. Doerner, K., et al. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–4), 79–99.

    Article  MathSciNet  MATH  Google Scholar 

  34. Doerner, K. F., et al. (2006). Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3), 830–841.

    Article  MathSciNet  MATH  Google Scholar 

  35. Xia, W. J., & Wu, Z. M. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409–425.

    Article  MathSciNet  Google Scholar 

  36. Sedenka, V., & Raida, Z. (2010). Critical comparison of multi-objective optimization methods: Genetic algorithms versus swarm intelligence. Radioengineering, 19(3), 369–377.

    Google Scholar 

  37. Berrichi, A., et al. (2010). Bi-objective ant colony optimization approach to optimize production and maintenance scheduling. Computers & Operations Research, 37(9), 1584–1596.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1), 1–9.

    Article  MATH  Google Scholar 

  39. Tan, K. C., Lee, T. H., & Khor, E. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), 253–290.

    Article  Google Scholar 

  40. Zitzler, E., et al. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

  41. Pinedo, M. (2002). Scheduling: theory, algorithms and systems. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  42. Gupta, J. (1988). Two-stage, hybrid flowshop scheduling problem. The Journal of the Operational Research Society, 39(4), 359–364.

    MATH  Google Scholar 

  43. Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers & Industrial Engineering, 37(1–2), 57–61.

    Article  Google Scholar 

  44. Ribas, I., Leisten, R., & Framinan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439–1454.

    Article  MathSciNet  MATH  Google Scholar 

  45. Ruiz, R., & Vazquez-Rodriguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang, W., & Li, S. (1998). A two-stage hybrid flowshop with uniform machines and setup times. Mathematical and Computer Modelling, 27(2), 27–45.

    Article  MathSciNet  MATH  Google Scholar 

  47. Dessouky, M. M., Dessouky, M. I., & Verma, S. K. (1998). Flowshop scheduling with identical jobs and uniform parallel machines. European Journal of Operational Research, 109(3), 620–631.

    Article  MATH  Google Scholar 

  48. Soewandi, H., & Elmaghraby, S. E. (2003). Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 35(5), 467–477.

    Article  Google Scholar 

  49. Kyparisis, G. J., & Koulamas, C. (2006). A note on makespan minimization in two-stage flexible flow shops with uniform machines. European Journal of Operational Research, 175(2), 1321–1327.

    Article  MATH  Google Scholar 

  50. Bertel, S., & Billaut, J. C. (2004). A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research, 159(3), 651–662.

    Article  MathSciNet  MATH  Google Scholar 

  51. Sevastianov, S. V. (2002). Geometrical heuristics for multiprocessor flowshop scheduling with uniform machines at each stage. Journal of Scheduling, 5(3), 205–225.

    Article  MathSciNet  MATH  Google Scholar 

  52. Kyparisis, G. J., & Koulamas, C. (2001). A note on weighted completion time minimization in a flexible flow shop. Operations Research Letters, 29(1), 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  53. Kyparisis, G. J., & Koulamas, C. (2006). Flexible flow shop scheduling with uniform parallel machines. European Journal of Operational Research, 168(3), 985–997.

    Article  MathSciNet  MATH  Google Scholar 

  54. Verma, S., & Dessouky, M. (1999). Multistage hybrid flowshop scheduling with identical jobs and uniform parallel machines. Journal of Scheduling, 2(3), 135–150.

    Article  MathSciNet  MATH  Google Scholar 

  55. Voss, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application. International Journal of Production Economics, 105(2), 445–458.

    Article  Google Scholar 

  56. Graham, R., et al. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5(2), 287–326.

    Article  MathSciNet  MATH  Google Scholar 

  57. Colorni, A., Dorigo, M., Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life (pp. 134–142)

    Google Scholar 

  58. Colorni, A., et al. (1994). Ant system for job-shop scheduling. Journal of Operations Research and Statistic Computing Science, 34(1), 39–53.

    MATH  Google Scholar 

  59. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 26(1), 29–41.

    Article  Google Scholar 

  60. Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426–438.

    Article  MathSciNet  MATH  Google Scholar 

  61. Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333–346.

    Article  Google Scholar 

  62. Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.

    Article  Google Scholar 

  63. T’Kindt, V., et al. (2002). An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142(2), 250–257.

    Article  MathSciNet  MATH  Google Scholar 

  64. Jayaraman, V. K., et al. (2000). Ant colony framework for optimal design and scheduling of batch plants. Computers & Chemical Engineering, 24(8), 1901–1912.

    Article  MathSciNet  Google Scholar 

  65. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2–3), 243–278.

    Article  MathSciNet  MATH  Google Scholar 

  66. Mariano, C. E., Morales, E. (1999). MOAQ an Ant-Q algorithm for multiple objective optimization problems. In Gecco-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 894–901.

    Google Scholar 

  67. Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54(3), 411–420.

    Article  Google Scholar 

  68. Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time—a quick method of obtaining a near optimum. Operations Research Quarterly, 16(1), 101–107.

    Article  MathSciNet  Google Scholar 

  69. Damodaran, P., Manjeshwar, P. K., & Srihari, K. (2006). Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms. International Journal of Production Economics, 103(2), 882–891.

    Article  Google Scholar 

  70. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Xiaolin Li, Qi Tan, Song Zhang for technical assistance. This work was supported by National Natural Science Foundation of China (70821001), Research Fund for the Doctoral Program of Higher Education of China (200803580024), HKSAR ITF (GHP/042/07LP), HKSAR RGC GRF (HKU 712508E), and HKU Research Committee grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Du, B., Chen, H., Huang, G.Q., Yang, H.D. (2011). Preference Vector Ant Colony System for Minimising Make-span and Energy Consumption in a Hybrid Flow Shop. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-652-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-617-7

  • Online ISBN: 978-0-85729-652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics