Skip to main content

Manipulating the Mosquito Microbiota to Study Its Function

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Aedes aegypti mosquitoes are the main vectors of several arboviruses and are commonly used as models in mosquito biology and vector competence studies. The mosquito microbiota has an impact on different aspects of host physiology, including development, immunity, and fecundity, in turn influencing the capability of the mosquito to transmit diseases. The composition of the microbiota is relatively simple in field mosquitoes, and many of its bacterial members are culturable in the laboratory. Being able to manipulate the composition of the mosquito microbiota is essential to effectively investigate its effect on host physiology and vector competence. This protocol describes how to obtain gnotobiotic mosquitoes, i.e., mosquitoes with a known microbiota composition, and how to monitor the effect of a manipulated microbiota on mosquito development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for development. Mol Ecol 23(11):2727–2739. https://doi.org/10.1111/mec.12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Correa MA, Matusovsky B, Brackney DE, Steven B (2018) Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun 9(1):4464. https://doi.org/10.1038/s41467-018-07014-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, Bouchier C, Ayala D, Paupy C, Valiente Moro C, Lambrechts L (2017) Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv 3(8):e1700585. https://doi.org/10.1126/sciadv.1700585

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 9:375. https://doi.org/10.1186/s13071-016-1660-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858. https://doi.org/10.1126/science.1201618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pike A, Dong Y, Dizaji NB, Gacita A, Mongodin EF, Dimopoulos G (2017) Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science 357(6358):1396–1399. https://doi.org/10.1126/science.aak9691

    Article  CAS  PubMed  Google Scholar 

  7. Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM (2012) Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21:5138–5150. https://doi.org/10.1111/j.1365-294X.2012.05759.x

    Article  CAS  PubMed  Google Scholar 

  8. Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, Dimopoulos G (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6(3):e1561. https://doi.org/10.1371/journal.pntd.0001561

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gendrin M, Christophides GK (2013) The Anopheles mosquito microbiota and their impact on pathogen transmission. In: Manguin S (ed) Anopheles mosquitoes—new insights into malaria vectors. IntechOpen, London. https://doi.org/10.5772/55107

    Chapter  Google Scholar 

  10. Charan SS, Pawar KD, Gavhale CV, Tikhe CV, Charan NS, Angel B, Joshi V, Patole MS, Shouche YS (2016) Comparative analysis of midgut bacterial communities in three aedine mosquito species from dengue-endemic and non-endemic areas of Rajasthan, India. Med Vet Entomol 30:264–277. https://doi.org/10.1111/mve.12173

    Article  CAS  PubMed  Google Scholar 

  11. Jannat KN, Roitberg BD (2013) Effects of larval density and feeding rates on larval life history traits in Anopheles gambiae s.s. (Diptera: Culicidae). J Vector Ecol 38(1):120–126. https://doi.org/10.1111/j.1948-7134.2013.12017.x

    Article  PubMed  Google Scholar 

  12. Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez MG (2014) Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasit Vectors 7:489. https://doi.org/10.1186/s13071-014-0489-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Linenberg I, Christophides GK, Gendrin M (2016) Larval diet affects mosquito development and permissiveness to Plasmodium infection. Sci Rep 6:38230. https://doi.org/10.1038/srep38230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR (2018) Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 12(7):e0006638. https://doi.org/10.1371/journal.pntd.0006638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, Sharakhova MV, Elahi R, Anderson MA, Chen XG, Sharakhov IV, Adelman ZN, Tu Z (2015) A male-determining factor in the mosquito Aedes aegypti. Science 348(6240):1268–1270. https://doi.org/10.1126/science.aaa2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clements AN (1992) The biology of mosquitoes, vol 1. Chapman and Hall, London

    Google Scholar 

  17. Alto BW, Reiskind MH, Lounibos LP (2008) Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 79(5):688–695

    Article  CAS  Google Scholar 

  18. Vogel KJ, Valzania L, Coon KL, Brown MR, Strand MR (2017) Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl Trop Dis 11(1):e0005273. https://doi.org/10.1371/journal.pntd.0005273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Timmermann SE, Briegel H (1999) Larval growth and biosynthesis of reserves in mosquitoes. J Insect Physiol 45(5):461–470. https://doi.org/10.1016/S0022-1910(98)00147-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Verena Kircher and Charles Bobin for preliminary work on protocols, Jean-Géraud Issaly for egg production, Guillaume Lacour for training on wing length measurements, Siegfried Hapfelmeier for sharing of bacterial strain, and Emma Wise for English proofreading of the manuscript. This work is funded by the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID), and by ANR JCJC Mosmi to MG (grant no. <ANR-18-CE15-0007>).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ottavia Romoli or Mathilde Gendrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romoli, O., Gendrin, M. (2020). Manipulating the Mosquito Microbiota to Study Its Function. In: Sandrelli, F., Tettamanti, G. (eds) Immunity in Insects. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0259-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0259-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0258-4

  • Online ISBN: 978-1-0716-0259-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics