Skip to main content

Analysis of the Physiological and Metabolic State of Leishmania Using Heavy Water Labeling

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

This protocol describes the use of heavy water (2H2O) labeling to determine the growth rate and metabolic state of Leishmania parasites in culture and in infected animals. In vitro labeling studies are undertaken by cultivating defined parasite developmental stages in standard medium supplemented with 5% 2H2O, resulting in the incorporation of deuterium (2H) into a range of metabolic precursors used in macromolecule (DNA, RNA, protein, lipid, and glycan) synthesis. The rate of turnover of different parasite macromolecules can subsequently be determined by analysis of deuterium enrichment in the different constituents of these macromolecules by gas chromatography–mass spectrometry (GC-MS). To measure the growth rate and physiological state of parasite stages in lesion tissue, infected mice were provided with 9% 2H2O in their drinking water for various periods of time and 2H-enrichment in the macromolecular constituents of isolated lesion-derived parasite stages determined by GC-MS. This protocol provides quantitative information on key cellular processes, such as replication (DNA turnover), transcription (RNA turnover), translation (protein turnover), membrane biogenesis (lipid turnover), and central carbon metabolism (glycan turnover) that define the growth state and phenome of different parasite stages in vitro and in vivo. This approach can be used to assess the impact of host immune responses on parasite growth and physiology (using different Leishmania strains/species, mouse lines), characterize different parasite populations during chronic and acute infections, and assess parasite responses to drug treatments. It is also broadly applicable to other microbial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    Article  CAS  Google Scholar 

  2. Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, Walkinshaw MD, Pérez-Pi I, Auer M, Denton H, Smith TK, Thompson J, Matthews KR (2018) Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell 176(1–2):306–317.e16

    PubMed  Google Scholar 

  3. Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM (2017) Adipose tissue: a safe haven for parasites? Trends Parasitol 33:276–284

    Article  Google Scholar 

  4. Fairlamb AH, Gow NA, Matthews KR, Waters AP (2016) Drug resistance in eukaryotic microorganisms. Nat Microbiol 1:16092

    Article  CAS  Google Scholar 

  5. Bates PA (1994) The developmental biology of Leishmania promastigotes. Exp Parasitol 79:215–218

    Article  CAS  Google Scholar 

  6. Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33:1027–1034

    Article  Google Scholar 

  7. McConville MJ, Saunders EC, Kloehn J, Dagley MJ (2015) Leishmania carbon metabolism in the macrophage phagolysosome—feast or famine? F1000Res 4:938

    Article  Google Scholar 

  8. Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10:e1003888

    Article  Google Scholar 

  9. Naderer T, Heng J, Saunders EC, Kloehn J, Rupasinghe TW, Brown TJ, McConville MJ (2015) Intracellular survival of leishmania major depends on uptake and degradation of extracellular matrix glycosaminoglycans by macrophages. PLoS Pathog 11:e1005136

    Article  Google Scholar 

  10. Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141:99–108

    Article  CAS  Google Scholar 

  11. Bates PA, Robertson CD, Tetley L, Coombs GH (1992) Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105(Pt 2):193–202

    Article  Google Scholar 

  12. Fiebig M, Kelly S, Gluenz E (2015) Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog 11:e1005186

    Article  Google Scholar 

  13. Mandell MA, Beverley SM (2017) Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 114:E801–E810

    Article  CAS  Google Scholar 

  14. Hellerstein MK (2003) In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu Rev Nutr 23:379–402

    Article  CAS  Google Scholar 

  15. Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintlmeister A, Schmid MC, Hanson BT, Shterzer N, Mizrahi I, Rauch I, Decker T, Bocklitz T, Popp J, Gibson CM, Fowler PW, Huang WE, Wagner M (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112:E194–E203

    Article  CAS  Google Scholar 

  16. Foletta VC, Palmieri M, Kloehn J, Mason S, Previs SF, McConville MJ, Sieber OM, Bruce CR, Kowalski GM (2016) Analysis of mammalian cell proliferation and macromolecule synthesis using deuterated water and gas chromatography-mass spectrometry. Metabolites 6(4):E34

    Article  Google Scholar 

  17. Goh B, Kim J, Seo S, Kim TY (2018) High-throughput measurement of lipid turnover rates using partial metabolic heavy water labeling. Anal Chem 90:6509–6518

    Article  CAS  Google Scholar 

  18. Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK (2007) Measurement of cell proliferation by heavy water labeling. Nat Protoc 2:3045–3057

    Article  CAS  Google Scholar 

  19. Neese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, Hoh R, Antelo F, Strawford A, McCune JM, Christiansen M, Hellerstein MK (2002) Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci U S A 99:15345–15350

    Article  CAS  Google Scholar 

  20. Kloehn J, Saunders EC, O'Callaghan S, Dagley MJ, McConville MJ (2015) Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog 11:e1004683

    Article  CAS  Google Scholar 

  21. Lang T, Goyard S, Lebastard M, Milon G (2005) Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7:383–392

    Article  CAS  Google Scholar 

  22. Romero I, Téllez J, Suárez Y, Cardona M, Figueroa R, Zelazny A, Gore Saravia N (2010) Viability and burden of Leishmania in extralesional sites during human dermal leishmaniasis. PLoS Negl Trop Dis 4:pii: e819

    Article  Google Scholar 

  23. Michel G, Ferrua B, Lang T, Maddugoda MP, Munro P, Pomares C, Lemichez E, Marty P (2011) Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro. PLoS Negl Trop Dis 5:e1323

    Article  Google Scholar 

  24. Müller AJ, Aeschlimann S, Olekhnovitch R, Dacher M, Späth GF, Bousso P (2013) Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism. Cell Host Microbe 14:460–467

    Article  Google Scholar 

  25. Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, Barry CE, Stoeckli M (2011) High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83:2112–2118

    Article  CAS  Google Scholar 

  26. Dagley M, McConville M (2018) DExSI: a new tool for the rapid quantitation of 13C-labelled metabolites detected by GC-MS. Bioinformatics 34(11):1957–1958

    Article  CAS  Google Scholar 

  27. Kushner DJ, Baker A, Dunstall TG (1999) Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol 77:79–88

    Article  CAS  Google Scholar 

  28. Shah V, Herath K, Previs SF, Hubbard BK, Roddy TP (2010) Headspace analyses of acetone: a rapid method for measuring the 2H-labeling of water. Anal Biochem 404:235–237

    Article  CAS  Google Scholar 

  29. Ralton JE, Naderer T, Piraino HL, Bashtannyk TA, Callaghan JM, McConville MJ (2003) Evidence that intracellular beta1-2 mannan is a virulence factor in Leishmania parasites. J Biol Chem 278:40757–40763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian National Health and Medical Research Council (NHMRC Project Grant APP1100000). M.J.M. is an NHMRC Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. McConville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kloehn, J., McConville, M.J. (2020). Analysis of the Physiological and Metabolic State of Leishmania Using Heavy Water Labeling. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics