Skip to main content

Enrichment of N-Linked Glycopeptides and Their Identification by Complementary Fragmentation Techniques

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

N-linked glycans are a ubiquitous posttranslational modification and are essential for correct protein folding in the endoplasmic reticulum of plants. However, this likely represents a narrow functional role for the diverse array of glycan structures currently associated with N-glycoproteins in plants. The identification of N-linked glycosylation sites and their structural characterization by mass spectrometry remains challenging due to their size, relative abundance, structural heterogeneity, and polarity. Current proteomic workflows are not optimized for the enrichment, identification and characterization of N-glycopeptides. Here we describe a detailed analytical procedure employing hydrophilic interaction chromatography enrichment, high-resolution tandem mass spectrometry employing complementary fragmentation techniques (higher-energy collisional dissociation and electron-transfer dissociation) and a data analytics workflow to produce an unbiased high confidence N-glycopeptide profile from plant samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert DN, Lamriben L, Powers ET et al (2014) The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 10:902–910

    Article  CAS  Google Scholar 

  2. Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: rd VA, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), pp 99–111

    Google Scholar 

  3. Liu Y, Li J (2014) Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front Plant Sci 5:162

    PubMed  PubMed Central  Google Scholar 

  4. Rips S, Bentley N, Jeong IS et al (2014) Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell 26:3792–3808

    Article  CAS  Google Scholar 

  5. Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939

    Article  CAS  Google Scholar 

  6. Fanata WI, Lee KH, Son BH et al (2013) N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73:966–979

    Article  CAS  Google Scholar 

  7. Zeng W, Ford KL, Bacic A et al (2018) N-linked glycan micro-heterogeneity in glycoproteins of Arabidopsis. Mol Cell Proteomics 17:413–421

    Article  CAS  Google Scholar 

  8. Henquet M, Lehle L, Schreuder M et al (2008) Identification of the gene encoding the alpha 1,3-mannosyltransferase (ALG3) in Arabidopsis and characterization of downstream N-glycan processing. Plant Cell 20:1652–1664

    Article  CAS  Google Scholar 

  9. Elbers IJW, Stoopen GM, Bakker H et al (2001) Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol 126:1314–1322

    Article  CAS  Google Scholar 

  10. Strasser R, Stadlmann J, Svoboda B et al (2005) Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochem J 387:385–391

    Article  CAS  Google Scholar 

  11. Pedersen CT, Loke I, Lorentzen A et al (2017) N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research. Plant J 91:394–407

    Article  CAS  Google Scholar 

  12. Song W, Mentink RA, Henquet MG et al (2013) N-glycan occupancy of Arabidopsis N-glycoproteins. J Proteome 93:343–355

    Article  CAS  Google Scholar 

  13. Zielinska DF, Gnad F, Schropp K et al (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548

    Article  CAS  Google Scholar 

  14. Ma J, Wang D, She J et al (2016) Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. New Phytol 212:282–296

    Article  CAS  Google Scholar 

  15. Xu SL, Medzihradszky KF, Wang ZY et al (2016) N-glycopeptide profiling in Arabidopsis inflorescence. Mol Cell Proteomics 15:2048–2054

    Article  CAS  Google Scholar 

  16. Wilson IB, Zeleny R, Kolarich D et al (2001) Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology 11:261–274

    Article  CAS  Google Scholar 

  17. Strasser R, Schoberer J, Jin C et al (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803

    Article  CAS  Google Scholar 

  18. Hagglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  Google Scholar 

  19. Ford KL, Zeng W, Heazlewood JL et al (2015) Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. Front Plant Sci 6:674

    Article  Google Scholar 

  20. Rice RH, Means GE, Brown WD (1977) Stabilization of bovine trypsin by reductive methylation. Biochim Biophys Acta 492:316–321

    Article  CAS  Google Scholar 

  21. Goebel-Stengel M, Stengel A, Tache Y (2011) The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem 414:38–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Heazlewood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramirez-Rodriguez, E.A., Heazlewood, J.L. (2020). Enrichment of N-Linked Glycopeptides and Their Identification by Complementary Fragmentation Techniques. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics