Skip to main content

A Porcine Model of Zika Virus Infection to Profile the In Utero Interferon Alpha Response

  • Protocol
  • First Online:
Zika Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2142))

Abstract

Pigs are highly relevant to model human in utero Zika virus (ZIKV) infection because both species have similar physiology, genetics, immunity, fetal brain development, and postnatal brain growth. The virus causes persistent in utero infection and replicates in the fetal brain, fetal membranes, and placenta. Subclinical persistent in utero infection in mid-gestation also increases interferon alpha (IFN-α) levels in fetal blood plasma and amniotic fluid. Moreover, we demonstrated altered IFN-α responses in porcine offspring affected with subclinical in utero ZIKV infection. Elevated levels of in utero type I interferons were suggested to play a role in fetal pathology. Thus, the porcine model may provide an understanding of ZIKV-induced immunopathology in fetuses and sequelae in offspring, which is important for the development of targeted interventions. Here, we describe surgery, ultrasound-guided in utero injection, postoperative monitoring, sampling, and cytokine testing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wichgers Schreur PJ, Van Keulen L, Anjema D et al (2018) Microencephaly in fetal piglets following in utero inoculation of Zika virus article. Emerg Microbes Infect 7(1):1–11

    Article  Google Scholar 

  2. Trus I, Darbellay J, Huang Y et al (2018) Persistent Zika virus infection in porcine conceptuses is associated with elevated in utero cortisol levels. Virulence 9(1):1338–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Darbellay J, Cox B, Lai K et al (2017) Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring. EBioMedicine 25:73–86

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ibrahim Z, Busch J, Awwad M et al (2006) Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation 13:488–499

    Article  PubMed  Google Scholar 

  5. Goco RV, Kress MB, Brantigan OC (1963) Comparison of mucus glands in the tracheobronchial tree of man and animals. Ann N Y Acad Sci 106:555–571

    Article  CAS  PubMed  Google Scholar 

  6. Pabst R, Binns RM (1994) The immune system of the respiratory tract in pigs. Vet Immunol Immunopathol 43:151–156

    Article  CAS  PubMed  Google Scholar 

  7. Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genomics 14:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dawson HD, Smith AD, Chen C et al (2017) An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol 202:2–15

    Article  CAS  PubMed  Google Scholar 

  9. Bendixen E, Danielsen M, Larsen K et al (2010) Advances in porcine genomics and proteomics—a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics 9:208–219

    Article  CAS  PubMed  Google Scholar 

  10. Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meurens F, Summerfield A, Nauwynck H et al (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57

    Article  CAS  PubMed  Google Scholar 

  12. Dickerson JW, Dobbing J (1967) Prenatal and postnatal growth and development of the central nervous system of the pig. Proc R Soc Lond B Biol Sci 166:384–395

    Article  CAS  PubMed  Google Scholar 

  13. Rothkötter HJ, Sowa E, Pabst R (2002) The pig as a model of developmental immunology. Hum Exp Toxicol 21:533–536

    Article  PubMed  Google Scholar 

  14. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  15. Pond WG, Boleman SL, Fiorotto ML et al (2000) Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med 223:102–108

    Article  CAS  PubMed  Google Scholar 

  16. Gieling ET, Schuurman T, Nordquist RE et al (2011) The pig as a model animal for studying cognition and neurobehavioral disorders. In: Hagan J (ed) Molecular and functional models in neuropsychiatry, Current topics in behavioral neurosciences, vol 7. Springer, Berlin, Heidelberg, pp 359–383

    Chapter  Google Scholar 

  17. Dickerson JW, Dobbing J (1966) Some peculiarities of cerebellar growth in pigs. Proc R Soc Med 59(11 Pt 1):1088

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glauser EM (1966) Advantages of piglets as experimental animals in pediatric research. Exp Med Surg 24:181–190

    CAS  PubMed  Google Scholar 

  19. Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31:1119–1126

    Article  CAS  PubMed  Google Scholar 

  20. Lind NM, Moustgaard A, Jelsing J et al (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751

    Article  CAS  PubMed  Google Scholar 

  21. Rogers CS, Abraham WM, Brogden KA et al (2008) The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295:L240–L263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan L, Saif LJ (2002) Induction of mucosal immune responses and protection against enteric viruses: rotavirus infection of gnotobiotic pigs as a model. Vet Immunol Immunopathol 87:147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saif LJ, Ward LA, Yuan L et al (2014) The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. In: Viral gastroenteritis. Springer, Vienna, pp 153–161

    Google Scholar 

  24. Heinritz SN, Mosenthin R, Weiss E (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 26:191–209

    Article  PubMed  Google Scholar 

  25. Rogers CS, Stoltz DA, Meyerholz DK et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5289):1837–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bassols A, Costa C, Eckersall PD et al (2014) The pig as an animal model for human pathologies: a proteomics perspective. Proteomics Clin Appl 8:715–731

    Article  CAS  PubMed  Google Scholar 

  27. Karniychuk UU, Nauwynck HJ (2009) Quantitative changes of sialoadhesin and CD163 positive macrophages in the implantation sites and organs of porcine embryos/fetuses during gestation. Placenta 30:497–500

    Article  CAS  PubMed  Google Scholar 

  28. Karniychuk UU, Saha D, Geldhof M et al (2011) Porcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb Pathog 51:194–202

    Article  CAS  PubMed  Google Scholar 

  29. Novakovic P, Harding JCS, Ladinig A et al (2016) Relationships of CD163 and CD169 positive cell numbers in the endometrium and fetal placenta with type 2 PRRSV RNA concentration in fetal thymus. Vet Res 47:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yockey LJ, Jurado KA, Arora N et al (2018) Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 3:eaao1680

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vermillion MS, Lei J, Shabi Y et al (2017) Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun 8:14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trus I, Udenze D, Berube N et al (2019) Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and altered stress responses in asymptomatic porcine offspring. PLoS Pathog 15:e1008038

    Google Scholar 

  33. Platt DJ, Smith AM, Arora N et al (2018) Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci Transl Med 10:eaao7090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Das SK, Singh UK, Mathur A et al (2011) Transplacental infection with Japanese encephalitis virus. J Infect Dis 141:712–715

    Google Scholar 

  35. Burns KF (2013) Congenital Japanese B encephalitis infection of swine. Exp Biol Med 75:621–625

    Article  Google Scholar 

  36. Khuroo MS, Kamali S, Jameel S (1995) Vertical transmission of hepatitis E virus. Lancet 345:1025–1026

    Article  CAS  PubMed  Google Scholar 

  37. Hosmillo M, Jeong YJ, Kim HJ et al (2010) Molecular detection of genotype 3 porcine hepatitis E virus in aborted fetuses and their sows. Arch Virol 155:1157–1161

    Article  CAS  PubMed  Google Scholar 

  38. Saha D, Karniychuk UU, Huang L et al (2014) Unusual outcome of in utero infection and subsequent postnatal super-infection with different PCV2b strains. Virol Sin 29:176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Honein MA, Dawson AL, Petersen EE et al (2017) Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 317:59–68

    Article  PubMed  Google Scholar 

  40. Jagger BW, Miner JJ, Cao B et al (2017) Gestational stage and IFN-λ signaling regulate ZIKV infection in utero. Cell Host Microbe 22:366–376.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao Q, Herrlinger S, Zhu Y-N et al (2017) The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus. Development 144:4114–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coffey LL, Keesler RI, Pesavento PA et al (2018) Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat Commun 9(1):2414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Boulanger-Bertolus J, Pancaro C, Mashour GA (2018) Increasing role of maternal immune activation in neurodevelopmental disorders. Front Behav Neurosci 12:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lanciotti RS, Lambert AJ, Holodniy M et al (2016) Phylogeny of zika virus in western hemisphere, 2015. Emerg Infect Dis 22:933–935

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duggal NK, Ritter JM, McDonald EM et al (2017) Differential neurovirulence of African and Asian genotype Zika virus isolates in outbred immunocompetent mice. Am J Trop Med Hyg 97:1410–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu MY, Liu SQ, Deng CL et al (2016) Detection of Zika virus by SYBR green one-step real-time RT-PCR. J Virol Methods 236:93–97

    Article  CAS  PubMed  Google Scholar 

  47. Faye O, Faye O, Dupressoir A et al (2008) One-step RT-PCR for detection of Zika virus. J Clin Virol 43:96–101

    Article  CAS  PubMed  Google Scholar 

  48. De Oliveira Souza IN, Frost PS, França JV et al (2018) Acute and chronic neurological consequences of early-life zika virus infection in mice. Sci Transl Med 10(444):eaar2749

    Article  CAS  Google Scholar 

  49. Darbellay J, Lai K, Babiuk S et al (2017) Neonatal pigs are susceptible to experimental Zika virus infection. Emerg Microbes Infect 6(1):1–4

    Article  Google Scholar 

  50. Udenze D, Trus I, Berube N et al (2019) The African strain of Zika virus causes more severe in utero infection than Asian strain in a porcine fetal transmission model. Emerg Microbes Infect 8(1):1098–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank VIDO-InterVac animal care technicians and veterinarians for the help with animal experiments. ZIKV was provided by the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (Fort Collins, Colorado, USA). Jan Erickson made drawings in Figs. 1 and 2. Published as VIDO-InterVac manuscript series number 875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uladzimir Karniychuk .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Ultrasound-guided fetal inoculation. To confirm fetal viability, fetal heart beating is verified prior to and after injection. (IC) Intracerebral injection. (IP) Intraperitoneal injection. (IA) Intraamniotic injection. The video footage is slowed down (1.5×) for better perception. (MP4 11366 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trus, I., Walker, S., Fuchs, M., Udenze, D., Gerdts, V., Karniychuk, U. (2020). A Porcine Model of Zika Virus Infection to Profile the In Utero Interferon Alpha Response. In: Kobinger, G., Racine, T. (eds) Zika Virus. Methods in Molecular Biology, vol 2142. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0581-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0581-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0580-6

  • Online ISBN: 978-1-0716-0581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics