Skip to main content

Image Processing for Volume Electron Microscopy

  • Protocol
  • First Online:
Volume Microscopy

Part of the book series: Neuromethods ((NM,volume 155))

Abstract

Today’s volume electron microscopy techniques produce large image datasets on the order of thousands of gigabytes. The vast amount of data makes manual analysis almost infeasible, and data storing and processing challenging. Specialized infrastructure and software was therefore developed during the last decade to address these problems, ranging from distributed and versioned 3D image stores to deep neural network architectures optimized for the segmentation of objects of interest. Illustrated by the example of connectomics, the reconstruction of neural circuitry from 3D images of brain tissue, the most common approaches and solutions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    CAS  PubMed  Google Scholar 

  2. Ohyama T, Schneider-Mizell CM, Fetter RD et al (2015) A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–639

    CAS  PubMed  Google Scholar 

  3. Takemura S-Y, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan JL, Berger DR, Wetzel AW, Lichtman JW (2016) The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165:192–206

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661

    CAS  PubMed  Google Scholar 

  6. Lee W-CA, Bonin V, Reed M et al (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370–374

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kornfeld J, Benezra SE, Narayanan RT et al (2017) EM connectomics reveals axonal target variation in a sequence-generating network. eLife 6

    Google Scholar 

  8. Helmstaedter M, Briggman KL, Turaga SC et al (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174

    CAS  PubMed  Google Scholar 

  9. Kim JS, Greene MJ, Zlateski A et al (2014) Space-time wiring specificity supports direction selectivity in the retina. Nature 509:331–336

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wanner AA, Genoud C, Masudi T et al (2016) Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat Neurosci 19:816–825

    CAS  PubMed  Google Scholar 

  11. Schmidt H, Gour A, Straehle J et al (2017) Axonal synapse sorting in medial entorhinal cortex. Nature 549:469–475

    PubMed  Google Scholar 

  12. Zheng Z, Lauritzen JS, Perlman E et al (2018) A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174:730–743.e22

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bock DD, Lee W-CA, Kerlin AM et al (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Svara FN, Kornfeld J, Denk W, Bollmann JH (2018) Volume EM reconstruction of spinal cord reveals wiring specificity in speed-related motor circuits. Cell Rep 23:2942–2954

    CAS  PubMed  Google Scholar 

  15. Vishwanathan A, Daie K, Ramirez AD et al (2017) Electron microscopic reconstruction of functionally identified cells in a neural integrator. Curr Biol 27:2137–2147.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wanner AA, Kirschmann MA, Genoud C (2015) Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J Microsc 259:137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kornfeld J, Denk W (2018) Progress and remaining challenges in high-throughput volume electron microscopy. Curr Opin Neurobiol 50:261–267

    CAS  PubMed  Google Scholar 

  18. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    PubMed  PubMed Central  Google Scholar 

  19. Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161

    CAS  PubMed  Google Scholar 

  20. Marr B (2018) How much data do we create every day? The mind-blowing stats everyone should read. Forbes. https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/. Accessed 15 Sep 2018

  21. Cardona A, Saalfeld S, Schindelin J et al (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7:e38011

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saalfeld S, Cardona A, Hartenstein V, Tomancak P (2009) CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25:1984–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  23. The HDF5® library & file format – the HDF Group. The HDF Group. https://www.hdfgroup.org/solutions/hdf5/. Accessed 3 Mar 2019

  24. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  25. HDF5 plugin for ImageJ. https://lmb.informatik.uni-freiburg.de/resources/opensource/imagej_plugins/hdf5.html. Accessed 3 Mar 2019

  26. Dorkenwald S, Schubert PJ, Killinger MF et al (2017) Automated synaptic connectivity inference for volume electron microscopy. Nat Methods 14:435–442

    CAS  PubMed  Google Scholar 

  27. ELEKTRONN – Convolutional neural network toolkit in python. Fast GPU acceleration and easy usage. http://elektronn.org. Accessed 3 Mar 2019

  28. Katz WT, Plaza SM (2019) DVID: distributed versioned image-oriented dataservice. Front Neural Circuits 13:5

    PubMed  PubMed Central  Google Scholar 

  29. Kleissas D, Hider R, Pryor D et al (2017) The block object storage service (bossDB): a cloud-native approach for petascale neuroscience discovery. bioRxiv 2017:217745

    Google Scholar 

  30. Burns R, Perlman E, Baden A et al (2018) A community-developed open-source computational ecosystem for big neuro data. Nat Methods 15(11):846–847

    PubMed  PubMed Central  Google Scholar 

  31. Berger DR, Seung HS, Lichtman JW (2018) VAST (volume annotation and segmentation tool): efficient manual and semi-automatic labeling of large 3D image stacks. Front Neural Circuits 12:88

    Google Scholar 

  32. Gonzalez RC, Woods RE (2008) Digital image processing. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  33. Pizer SM, Philip Amburn E, Austin JD et al (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39:355–368

    Google Scholar 

  34. Heinrich L, Bogovic JA, Saalfeld S (2017) Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy. Lect Notes Comput Sci 2017:135–143

    Google Scholar 

  35. Jain V (2017) Adversarial image alignment and interpolation. arXiv:1707.00067

    Google Scholar 

  36. Hanslovsky P, Bogovic JA, Saalfeld S (2017) Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 33:1379–1386

    CAS  PubMed  Google Scholar 

  37. Buniatyan D, Macrina T, Ih D et al (2017) Deep learning improves template matching by normalized cross correlation. arXiv:1705.08593

    Google Scholar 

  38. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision

    Google Scholar 

  39. SRI International. Artificial Intelligence Center, Fischler MA, Bolles RC (1980) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Google Scholar 

  40. Sun C, Beare R, Hilsenstein V, Jackway P (2006) Mosaicing of microscope images with global geometric and radiometric corrections. J Microsc 224:158–165

    PubMed  Google Scholar 

  41. Saalfeld S, Fetter R, Cardona A, Tomancak P (2012) Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods 9:717–720

    CAS  PubMed  Google Scholar 

  42. Kaynig V, Fischer B, Müller E, Buhmann JM (2010) Fully automatic stitching and distortion correction of transmission electron microscope images. J Struct Biol 171:163–173

    PubMed  Google Scholar 

  43. TrakEM2. ImageJ. https://imagej.net/TrakEM2. Accessed 3 Mar 2019

  44. Image Transformation Web Services. https://www.janelia.org/image-transformation-web-services. Accessed 3 Mar 2019

  45. Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14:1081–1088

    CAS  PubMed  Google Scholar 

  46. Boergens KM, Berning M, Bocklisch T et al (2017) webKnossos: efficient online 3D data annotation for connectomics. Nat Methods 14:691–694

    CAS  PubMed  Google Scholar 

  47. Sommer C, Straehle C, Kothe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro

    Google Scholar 

  48. Turaga SC, Murray JF, Jain V et al (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22:511–538

    PubMed  Google Scholar 

  49. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. arXiv [cs.CV]. arXiv:1505.04597

    Google Scholar 

  50. Ciresan D, Giusti A, Gambardella LM (2012) Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Syst 2012:1–9

    Google Scholar 

  51. SNEMI3D. http://brainiac2.mit.edu/SNEMI3D/. Accessed 3 Mar 2019

  52. CREMI. https://cremi.org/. Accessed 3 Mar 2019

  53. Beier T, Pape C, Rahaman N et al (2017) Multicut brings automated neurite segmentation closer to human performance. Nat Methods 14:101

    CAS  PubMed  Google Scholar 

  54. Berning M, Boergens KM, Helmstaedter M (2015) SegEM: efficient image analysis for high-resolution connectomics. Neuron 87:1193–1206

    CAS  PubMed  Google Scholar 

  55. Nunez-Iglesias J, Kennedy R, Parag T et al (2013) Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS One 8:e71715

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pape C, Beier T, Li P et al (2017) Solving large multicut problems for connectomics via domain decomposition. In: 2017 IEEE international conference on computer vision workshops (ICCVW)

    Google Scholar 

  57. Januszewski M, Kornfeld J, Li PH et al (2018) High-precision automated reconstruction of neurons with flood-filling networks. Nat Methods 15(8):605–610

    Google Scholar 

  58. Meirovitch Y, Matveev A, Saribekyan H et al (2016) A multi-pass approach to large-scale connectomics. arXiv [q-bio.QM]

    Google Scholar 

  59. Januszewski M, Maitin-Shepard J, Li P et al (2016) Flood-filling networks. arXiv [cs.CV]

    Google Scholar 

  60. Kreshuk A, Straehle CN, Sommer C et al (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS One 6:e24899

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kreshuk A, Koethe U, Pax E et al (2014) Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9:e87351

    PubMed  PubMed Central  Google Scholar 

  62. Roncal WG, Pekala M, Kaynig-Fittkau V et al (2015) VESICLE: volumetric evaluation of synaptic interfaces using computer vision at large scale. Proceedings of the British machine vision conference 2015

    Google Scholar 

  63. Staffler B, Berning M, Boergens KM et al (2017) SynEM, automated synapse detection for connectomics. eLife 6:e26414

    Google Scholar 

  64. Schubert P, Dorkenwald S, Januszewski M et al (2019) Learning cellular morphology with neural networks. Nat Commun 10:2736

    Google Scholar 

  65. Zung J, Tartavull I, Lee K, Seung HS (2017) An error detection and correction framework for connectomics. Advances in Neural Information Processing Systems 30 (NIPS 2018)

    Google Scholar 

  66. Rolnick D, Meirovitch Y, Parag T et al (2017) Morphological error detection in 3D segmentations. arXiv:1705.10882

    Google Scholar 

Download references

Acknowledgments

We would like to thank the authors of the software packages listed in Table 1 for providing details on their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian A. Wanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kornfeld, J., Svara, F., Wanner, A.A. (2020). Image Processing for Volume Electron Microscopy. In: Wacker, I., Hummel, E., Burgold, S., Schröder, R. (eds) Volume Microscopy . Neuromethods, vol 155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0691-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0691-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0690-2

  • Online ISBN: 978-1-0716-0691-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics