Skip to main content

Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein–Peptide Complex Structures

  • Protocol
  • First Online:
Protein Structure Prediction

Abstract

Structural characterizations of protein–peptide complexes may require further improvements. These may include reconstruction of missing atoms and/or structure optimization leading to higher accuracy models. In this work, we describe a workflow that generates accurate structural models of peptide–protein complexes starting from protein–peptide models in C-alpha representation generated using CABS-dock molecular docking. First, protein–peptide models are reconstructed from their C-alpha traces to all-atom representation using MODELLER. Next, they are refined using Rosetta FlexPepDock. The described workflow allows for reliable all-atom reconstruction of CABS-dock models and their further improvement to high-resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S (2018) Protein–peptide docking: opportunities and challenges. Drug Discov Today 23:1530–1537. https://doi.org/10.1016/j.drudis.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  2. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43(W1):W419–W424. https://doi.org/10.1093/nar/gkv456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurcinski M, Ciemny MP, Oleniecki T, Kuriata A, Badaczewska-Dawid AE, Kolinski A, Kmiecik S (2019) CABS-dock standalone: a toolbox for flexible protein–peptide docking. Bioinformatics 35 (20):4170–4172 https://doi.org/10.1093/bioinformatics/btz185

  4. Kurcinski M, Badaczewska‐Dawid AE, Kolinski M, Kolinski A, Kmiecik S (2020) Flexible docking of peptides to proteins using CABS‐dock. Protein Science 29 (1):211–222 https://doi.org/10.1002/pro.3771

  5. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma 54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  6. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins Struct Funct Bioinforma 78:2029–2040. https://doi.org/10.1002/prot.22716

    Article  CAS  Google Scholar 

  7. Badaczewska-Dawid AE, Kolinski A, Kmiecik S (2020) Computational reconstruction of atomistic protein structures from coarse-grained models. Comput Struct Biotechnol J 18:162–176. https://doi.org/10.1016/j.csbj.2019.12.007

  8. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O (2017) High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput Biol 13:e1005905. https://doi.org/10.1371/journal.pcbi.1005905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alam N, Schueler-Furman O (2017) Modeling peptide-protein structure and binding using Monte Carlo sampling approaches: Rosetta flexpepdock and flexpepbind. Methods Mol Biol 1561:139–169. https://doi.org/10.1007/978-1-4939-6798-8_9

  10. Marcu O, Dodson EJ, Alam N, Sperber M, Kozakov D, Lensink MF, Schueler-Furman O (2017) FlexPepDock lessons from CAPRI peptide–protein rounds and suggested new criteria for assessment of model quality and utility. Proteins Struct Funct Bioinforma 85:445–462. https://doi.org/10.1002/prot.25230

    Article  CAS  Google Scholar 

  11. Liu T, Pan X, Chao L, Tan W, Qu S, Yang L, Wang B, Mei H (2014) Subangstrom accuracy in pHLA-I modeling by rosetta FlexPepDock refinement protocol. J Chem Inf Model 54:2233–2242. https://doi.org/10.1021/ci500393h

    Article  CAS  PubMed  Google Scholar 

  12. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253. https://doi.org/10.1093/nar/gkr431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blaszczyk M, Kurcinski M, Kouza M, Wieteska L, Debinski A, Kolinski A, Kmiecik S (2016) Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93:72–83. https://doi.org/10.1016/j.ymeth.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S (2016) Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 6:37532. https://doi.org/10.1038/srep37532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciemny MP, Kurcinski M, Kozak K, Kolinski A, Kmiecik S (2017) Highly flexible protein-peptide docking using cabs-dock. Methods Mol Biol 1561:69–94. https://doi.org/10.1007/978-1-4939-6798-8_6

    Article  CAS  PubMed  Google Scholar 

  16. Ciemny MP, Kurcinski M, Blaszczyk M, Kolinski A, Kmiecik S (2017) Modeling EphB4-EphrinB2 protein-protein interaction using flexible docking of a short linear motif. Biomed Eng Online 16:71. https://doi.org/10.1186/s12938-017-0362-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blaszczyk M, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2019) Protein–peptide docking using CABS-dock and contact information. Brief Bioinform 20(6):2299–2305. https://doi.org/10.1093/bib/bby080

    Article  PubMed  Google Scholar 

  18. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. https://doi.org/10.1146/annurev.biophys.29.1.291

    Article  PubMed  Google Scholar 

  19. Fiser A, Do RKG, Šali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773. https://doi.org/10.1110/ps.9.9.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YEA, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popović Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiser A, Šali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  22. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163

    Article  CAS  PubMed  Google Scholar 

  23. Theobald DL, Wuttke DS (2006) THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22:2171–2172. https://doi.org/10.1093/bioinformatics/btl332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.E.B-D, A.Ko., and S.K. received funding from NCN Poland, Grant MAESTRO2014/14/A/ST6/00088. O.S-F. and A.Kh. received funding from the ISF, Grant 717/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kmiecik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Badaczewska-Dawid, A.E., Khramushin, A., Kolinski, A., Schueler-Furman, O., Kmiecik, S. (2020). Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein–Peptide Complex Structures. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics