Skip to main content

Identifying Genotype–Phenotype Correlations via Integrative Mutation Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

Mutations in protein-coding regions can lead to large biological changes and are associated with genetic conditions, including cancers and Mendelian diseases, as well as drug resistance. Although whole genome and exome sequencing help to elucidate potential genotype–phenotype correlations, there is a large gap between the identification of new variants and deciphering their molecular consequences. A comprehensive understanding of these mechanistic consequences is crucial to better understand and treat diseases in a more personalized and effective way. This is particularly relevant considering estimates that over 80% of mutations associated with a disease are incorrectly assumed to be causative. A thorough analysis of potential effects of mutations is required to correctly identify the molecular mechanisms of disease and enable the distinction between disease-causing and non–disease-causing variation within a gene. Here we present an overview of our integrative mutation analysis platform, which focuses on refining the current genotype–phenotype correlation methods by using the wealth of protein structural information.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jatana N, Ascher DB, Pires DEV et al (2019) Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations. Autophagy:1–17. https://doi.org/10.1080/15548627.2019.1606636

  2. Abayakoon P, Jin Y, Lingford JP et al (2018) Structural and biochemical insights into the function and evolution of sulfoquinovosidases. ACS Cent Sci 4(9):1266–1273. https://doi.org/10.1021/acscentsci.8b00453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ascher DB, Cromer BA, Morton CJ et al (2011) Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry 50(13):2611–2622. https://doi.org/10.1021/bi101893w

    Article  CAS  PubMed  Google Scholar 

  4. Portelli S, Phelan JE, Ascher DB et al (2018) Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Sci Rep 8(1):15356. https://doi.org/10.1038/s41598-018-33370-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silk M, Petrovski S, Ascher DB (2019) MTR-Viewer: identifying regions within genes under purifying selection. Nucleic Acids Res 47(W1):W121–W126. https://doi.org/10.1093/nar/gkz457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pires DE, Blundell TL, Ascher DB (2015) Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res 43(Database issue):D387–D391. https://doi.org/10.1093/nar/gku966

    Article  CAS  PubMed  Google Scholar 

  7. Lucy G, Douglas EVP, Álvaro O-N et al (2014) An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Human Molecular Genetics, 23(22):5976–5988. https://doi.org/10.1093/hmg/ddu321

  8. Blaszczyk M, Harmer NJ, Chirgadze DY et al (2015) Achieving high signal-to-noise in cell regulatory systems: spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Prog Biophys Mol Biol 118(3):103–111. https://doi.org/10.1016/j.pbiomolbio.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jafri M, Wake NC, Ascher DB et al (2015) Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov 5(7):723–729. https://doi.org/10.1158/2159-8290.CD-14-1096

    Article  CAS  PubMed  Google Scholar 

  10. Pacitto A, Ascher DB, Wong LH et al (2015) Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein. Open Biol 5(12):150174. https://doi.org/10.1098/rsob.150174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pires DE, Chen J, Blundell TL et al (2016) In silico functional dissection of saturation mutagenesis: interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep 6:19848. https://doi.org/10.1038/srep19848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albanaz ATS, Rodrigues CHM, Pires DEV et al (2017) Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov 12(6):553–563. https://doi.org/10.1080/17460441.2017.1322579

    Article  PubMed  Google Scholar 

  13. Casey RT, Ascher DB, Rattenberry E et al (2017) SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Mol Genet Genomic Med 5(3):237–250. https://doi.org/10.1002/mgg3.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jubb HC, Pandurangan AP, Turner MA et al (2017) Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol 128:3–13. https://doi.org/10.1016/j.pbiomolbio.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  15. Pandurangan AP, Ascher DB, Thomas SE et al (2017) Genomes, structural biology and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans 45(2):303–311. https://doi.org/10.1042/BST20160422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sibanda BL, Chirgadze DY, Ascher DB et al (2017) DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 355(6324):520–524. https://doi.org/10.1126/science.aak9654

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigues CH, Ascher DB, Pires DE (2018) Kinact: a computational approach for predicting activating missense mutations in protein kinases. Nucleic Acids Res 46(W1):W127–W132. https://doi.org/10.1093/nar/gky375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hnizda A, Fabry M, Moriyama T et al (2018) Relapsed acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into hotspots driving intersubunit stimulation. Leukemia 32(6):1393–1403. https://doi.org/10.1038/s41375-018-0073-5

    Article  CAS  PubMed  Google Scholar 

  19. Andrews KA, Ascher DB, Pires DEV et al (2018) Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet 55(6):384–394. https://doi.org/10.1136/jmedgenet-2017-105127

    Article  CAS  PubMed  Google Scholar 

  20. Usher JL, Ascher DB, Pires DE et al (2015) Analysis of HGD gene mutations in patients with alkaptonuria from the United Kingdom: identification of novel mutations. JIMD Rep 24:3–11. https://doi.org/10.1007/8904_2014_380

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nemethova M, Radvanszky J, Kadasi L et al (2016) Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on ‘black bone disease’ in Italy. Eur J Hum Genet 24(1):66–72. https://doi.org/10.1038/ejhg.2015.60

    Article  CAS  PubMed  Google Scholar 

  22. Ramdzan YM, Trubetskov MM, Ormsby AR et al (2017) Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep 19(5):919–927. https://doi.org/10.1016/j.celrep.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  23. Traynelis J, Silk M, Wang Q et al (2017) Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. Genome Res 27(10):1715–1729. https://doi.org/10.1101/gr.226589.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trezza A, Bernini A, Langella A et al (2017) A computational approach from gene to structure analysis of the human ABCA4 transporter involved in genetic retinal diseases. Invest Ophthalmol Vis Sci 58(12):5320–5328. https://doi.org/10.1167/iovs.17-22158

    Article  CAS  PubMed  Google Scholar 

  25. Ascher DB, Spiga O, Sekelska M et al (2019) Homogentisate 1,2-dioxygenase (HGD) gene variants, their analysis and genotype-phenotype correlations in the largest cohort of patients with AKU. Eur J Hum Genet 27(6):888–902. https://doi.org/10.1038/s41431-019-0354-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soardi FC, Machado-Silva A, Linhares ND et al (2017) Familial STAG2 germline mutation defines a new human cohesinopathy. NPJ Genom Med 2:7. https://doi.org/10.1038/s41525-017-0009-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phelan J, Coll F, McNerney R et al (2016) Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 14:31. https://doi.org/10.1186/s12916-016-0575-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silvino AC, Costa GL, Araujo FC et al (2016) Variation in human cytochrome P-450 drug-metabolism genes: a gateway to the understanding of Plasmodium vivax relapses. PLoS One 11(7):e0160172. https://doi.org/10.1371/journal.pone.0160172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White RR, Ponsford AH, Weekes MP et al (2016) Ubiquitin-dependent modification of skeletal muscle by the parasitic nematode, Trichinella spiralis. PLoS Pathog 12(11):e1005977. https://doi.org/10.1371/journal.ppat.1005977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawkey J, Ascher DB, Judd LM et al (2018) Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom 4(3). https://doi.org/10.1099/mgen.0.000165

  31. Holt KE, McAdam P, Thai PVK et al (2018) Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet 50(6):849–856. https://doi.org/10.1038/s41588-018-0117-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karmakar M, Globan M, Fyfe JAM et al (2018) Analysis of a Novel pncA mutation for susceptibility to pyrazinamide therapy. Am J Respir Crit Care Med 198(4):541–544. https://doi.org/10.1164/rccm.201712-2572LE

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vedithi SC, Malhotra S, Das M et al (2018) Structural implications of mutations conferring rifampin resistance in Mycobacterium leprae. Sci Rep 8(1):5016. https://doi.org/10.1038/s41598-018-23423-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karmakar M, Rodrigues CHM, Holt KE et al (2019) Empirical ways to identify novel Bedaquiline resistance mutations in AtpE. PLoS One 14(5):e0217169. https://doi.org/10.1371/journal.pone.0217169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ascher DB, Wielens J, Nero TL et al (2014) Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep 4:4765. https://doi.org/10.1038/srep04765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jubb HC, Higueruelo AP, Ochoa-Montano B et al (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol 429(3):365–371. https://doi.org/10.1016/j.jmb.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30(3):335–342. https://doi.org/10.1093/bioinformatics/btt691

    Article  CAS  PubMed  Google Scholar 

  38. Pandurangan AP, Ochoa-Montano B, Ascher DB et al (2017) SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 45(W1):W229–W235. https://doi.org/10.1093/nar/gkx439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(Web Server issue):W314–W319. https://doi.org/10.1093/nar/gku411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Douglas EVP, Carlos HMR, David BA et al (2020) mCSM-membrane: predicting the effects of mutations on transmembrane proteins, Nucleic Acids Research, gkaa416. https://doi.org/10.1093/nar/gkaa416

  41. Rodrigues CH, Pires DE, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 46(W1):W350–W355. https://doi.org/10.1093/nar/gky300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodrigues CHM, Myung Y, Pires DEV et al (2019) mCSM-PPI2: predicting the effects of mutations on protein-protein interactions. Nucleic Acids Res 47(W1):W338–W344. https://doi.org/10.1093/nar/gkz383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pires DE, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44(W1):W469–W473. https://doi.org/10.1093/nar/gkw458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoochan M, Carlos HMR, David BA, Douglas EVP et al (2020) mCSM-AB2: guiding rational antibody design using graphbased signatures, Bioinformatics. 36(5):1453–1459. https://doi.org/10.1093/bioinformatics/btz779

  45. Yoochan M, Douglas EVP, David BA et al. mmCSM-AB: guiding rational antibody engineering through multiple point mutations, Nucleic Acids Research, gkaa389. https://doi.org/10.1093/nar/gkaa389

  46. Pires DEV, Ascher DB (2017) mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res 45(W1):W241–W246. https://doi.org/10.1093/nar/gkx236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pires DE, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 6:29575. https://doi.org/10.1038/srep29575

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44(W1):W557–W561. https://doi.org/10.1093/nar/gkw390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Douglas EVP et al (2011) Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC genomics (12) No. S4. BioMed Central

    Google Scholar 

  50. Douglas EVP, Raquel CM-M, Carlos HS, Frederico FC, Wagner M Jr (2013) aCSM: noise-free graphbased signatures to large-scale receptor-based ligand prediction, Bioinformatics 29(7):855–861. https://doi.org/10.1093/bioinformatics/btt058

  51. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stenson PD, Mort M, Ball EV et al (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  54. Karczewski KJ, Francioli LC, Tiao G et al (2019) Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv:531210. https://doi.org/10.1101/531210

  55. Sudlow C, Gallacher J, Allen N et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779

    Article  PubMed  PubMed Central  Google Scholar 

  56. UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46(5):2699. https://doi.org/10.1093/nar/gky092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rose PW, Prlic A, Altunkaya A et al (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45(D1):D271–D281. https://doi.org/10.1093/nar/gkw1000

    Article  CAS  PubMed  Google Scholar 

  58. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  59. Witten IH, Frank E, Hall MA et al (2016) Data mining, fourth edition: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

Download references

Acknowledgments

This work was supported by Australian Government Research Training Program Scholarships [to S.P., M.K., Y.M., C.H.M.R.]; the Jack Brockhoff Foundation [JBF 4186, 2016 to D.B.A.]; a Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [MR/M026302/1 to D.B.A. and D.E.V.P.]; and the National Health and Medical Research Council of Australia [APP1072476 to D.B.A.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas E. V. Pires or David B. Ascher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Airey, E. et al. (2021). Identifying Genotype–Phenotype Correlations via Integrative Mutation Analysis. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics