Skip to main content

Four-Point Bending Testing for Mechanical Assessment of Mouse Bone Structural Properties

  • Protocol
  • First Online:
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2230))

Abstract

One of the primary functions of bone is to support the skeleton by withstanding load. In the diseased state, bone’s ability to perform this function is altered. Quantification of the features of bone that support its functional behavior, and how they may change with disease, is accomplished through mechanical testing. As such, mechanical testing is a useful tool for scientists studying orthopedic-related diseases. Furthermore, a common animal model used to investigate disease and its treatment is the mouse. Therefore, in this chapter we (1) describe central concepts of mechanical testing, (2) describe factors that influence the mechanical behavior of bone, and (3) describe the application of a widely used mechanical testing technique, four-point bending, to the mouse bone for characterization of its structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469(8):2139–2149

    Article  PubMed  PubMed Central  Google Scholar 

  2. van der Meulen MH, Jepsen K, Mikic B (2001) Understanding bone strength: size isn't everything. Bone (New York, NY) 29(2):101–104

    Google Scholar 

  3. Sharir A, Barak MM, Shahar R (2008) Whole bone mechanics and mechanical testing. Vet J 177(1):8–17

    Article  PubMed  Google Scholar 

  4. Lai WM, Rubin DH, Krempl E (1999) Introduction to continuum mechanics, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  5. Jepsen KJ, Silva MJ, Vashishth D, Guo XE, Van Der Meulen MC (2015) Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res 30(6):951–966

    Article  PubMed  PubMed Central  Google Scholar 

  6. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608

    Article  CAS  PubMed  Google Scholar 

  7. Mow VC, Huiskes R (2005) Basic Orthopaedic Biomechanics & Mechano-biology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  8. Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH (2005) A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech 38(3):467–475

    Article  PubMed  Google Scholar 

  9. Vesper EO, Hammond MA, Allen MR, Wallace JM (2017) Even with rehydration, preservation in ethanol influences the mechanical properties of bone and how bone responds to experimental manipulation. Bone 97:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Broz J, Simske S, Greenberg A, Luttges M (1993) Effects of rehydration state on the flexural properties of whole mouse long bones. J Biomech Eng 115(4A):447–449

    Article  CAS  PubMed  Google Scholar 

  11. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18(5):405–410

    Article  CAS  PubMed  Google Scholar 

  12. Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33(3):317–325

    Article  CAS  PubMed  Google Scholar 

  13. Gross T, McLeod KJ, Rubin CT (1992) Characterizing bone strain distributions in vivo using three triple rosette strain gages. J Biomech 25(9):1081–1087

    Article  CAS  PubMed  Google Scholar 

  14. Lanyon L, Hampson W, Goodship A, Shah J (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand 46(2):256–268

    Article  CAS  PubMed  Google Scholar 

  15. Collins CJ, Vivanco JF, Sokn SA, Williams BO, Burgers TA, Ploeg H-L (2015) Fracture healing in mice lacking Pten in osteoblasts: a micro-computed tomography image-based analysis of the mechanical properties of the femur. J Biomech 48(2):310–317

    Article  PubMed  Google Scholar 

  16. Hiltunen A, Vuorio E, Aro HT (1993) A standardized experimental fracture in the mouse tibia. J Orthop Res 11(2):305–312

    Article  CAS  PubMed  Google Scholar 

  17. Silva MJ, Brodt MD, Ettner SL (2002) Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res 17(9):1597–1603

    Article  PubMed  Google Scholar 

  18. Deo N, Cheng TL, Mikulec K, Peacock L, Little DG, Schindeler A (2018) Improved union and bone strength in a mouse model of NF1 pseudarthrosis treated with recombinant human bone morphogenetic protein-2 and zoledronic acid. J Orthop Res 36(3):930–936

    CAS  PubMed  Google Scholar 

  19. Powell KM, Brown AP, Skaggs CG, Pulliam AN, Berman AG, Deosthale P, Plotkin LI, Allen MR, Williams DR, Wallace JM (2020) 6′-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding. Bone Rep 12:100246

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kwak YH, Barrientos T, Furman B, Zhang H, Puviindran V, Cutcliffe H, Herfarth J, Nwankwo E, Alman BA (2019) Pharmacologic targeting of β-catenin improves fracture healing in old mice. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  21. Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2015) Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone 71:115–123

    Article  CAS  PubMed  Google Scholar 

  22. Iura A, McNerny EG, Zhang Y, Kamiya N, Tantillo M, Lynch M, Kohn DH, Mishina Y (2015) Mechanical loading synergistically increases trabecular bone volume and improves mechanical properties in the mouse when BMP signaling is specifically ablated in osteoblasts. PLoS One 10(10):e0141345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jiang F, Liu S, Chen A, Li B-Y, Robling AG, Chen J, Yokota H (2018) Finite element analysis of the mouse distal femur with tumor burden in response to knee loading. Int J Orthop (Hong Kong) 5(1):863

    Article  Google Scholar 

  24. Zhang Y, McNerny EG, Terajima M, Raghavan M, Romanowicz G, Zhang Z, Zhang H, Kamiya N, Tantillo M, Zhu P (2016) Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments. Bone 88:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardner MJ, van der Meulen MC, Carson J, Zelken J, Ricciardi BF, Wright TM, Lane JM, Bostrom MP (2007) Role of parathyroid hormone in the mechanosensitivity of fracture healing. J Orthop Res 25(11):1474–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. ASTM Standard C1684-08 (2008). ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  27. Landau H (1967) Sampling, data transmission, and the Nyquist rate. Proc IEEE 55(10):1701–1706

    Article  Google Scholar 

  28. Wallace JM, Ron MS, Kohn DH (2009) Short-term exercise in mice increases tibial post-yield mechanical properties while two weeks of latency following exercise increases tissue-level strength. Calcif Tissue Int 84(4):297–304

    Article  CAS  PubMed  Google Scholar 

  29. Wallace JM, Golcuk K, Morris MD, Kohn DH (2010) Inbred strain-specific effects of exercise in wild type and biglycan deficient mice. Ann Biomed Eng 38(4):1607–1617

    Article  PubMed  Google Scholar 

  30. Brodt MD, Ellis CB, Silva MJ (1999) Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res 14(12):2159–2166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis E. DeFrate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cutcliffe, H.C., DeFrate, L.E. (2021). Four-Point Bending Testing for Mechanical Assessment of Mouse Bone Structural Properties. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1028-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1027-5

  • Online ISBN: 978-1-0716-1028-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics