Skip to main content

Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation

  • Protocol
  • First Online:
Multiple Sequence Alignment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2231))

Abstract

We present Seaview version 5, a multiplatform program to perform multiple alignment and phylogenetic tree building from molecular sequence data. Seaview provides network access to sequence databases, alignment with arbitrary algorithm, parsimony, distance and maximum likelihood tree building with PhyML, and display, printing, and copy-to-clipboard or to SVG files of rooted or unrooted, binary or multifurcating phylogenetic trees. While Seaview is primarily a program providing a graphical user interface to guide the user into performing desired analyses, Seaview possesses also a command-line mode adequate for user-provided scripts. Seaview version 5 introduces the ability to reconcile a gene tree with a reference species tree and use this reconciliation to root and rearrange the gene tree. Seaview is freely available at http://doua.prabi.fr/software/seaview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phylogeny Programs. http://evolution.genetics.washington.edu/phylip/software.html

  2. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  3. International Nucleotide Sequence Database Collaboration|INSDC, http://www.insdc.org/

  4. PRABI-Doua: SeaView, http://doua.prabi.fr/software/seaview

  5. Debian—Details of package seaview in buster, https://packages.debian.org/buster/seaview

  6. PHYLIP Home Page. http://evolution.gs.washington.edu/phylip.html

  7. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extensible file format for systematic information. Syst Biol 46:590–621

    Article  CAS  PubMed  Google Scholar 

  9. Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP*. Curr Protoc Bioinforma 6(4):1–6.4.28

    Google Scholar 

  10. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katoh K, Misawa K, Kuma K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  14. Roshan U (2014) Multiple sequence alignment using probcons and probalign. In: Russell D. (eds) Multiple sequence alignment methods. Methods in Molecular Biology (Methods and Protocols), vol 1079. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-646-7_9

  15. Ranwez V, Harispe S, Delsuc F et al (2011) MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One 6:e22594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jukes TH, Osawa S (1993) Evolutionary changes in the genetic code. Comp Biochem Physiol B 106:489–494

    Article  CAS  PubMed  Google Scholar 

  17. Osawa S, Jukes TH, Watanabe K et al (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. The Newick tree format. http://evolution.genetics.washington.edu/phylip/newicktree.html

  19. Hochbaum DS, Pathria A (1997) Path costs in evolutionary tree reconstruction. J Comput Biol 4:163–175

    Article  CAS  PubMed  Google Scholar 

  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791

    Article  Google Scholar 

  21. Lemoine F, Domelevo Entfellner J-B, Wilkinson E et al (2018) Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556:452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felsenstein J (2003) Inferring phylogenies, Sinauer Associates, Sunderland MA

    Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  24. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  PubMed  Google Scholar 

  25. Rzhetsky A, Nei M (1995) Tests of applicability of several substitution models for DNA sequence data. Mol Biol Evol 12:131–151

    Article  CAS  PubMed  Google Scholar 

  26. Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci U S A 91:1455–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lockhart PJ, Steel MA, Hendy MD et al (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    CAS  PubMed  Google Scholar 

  28. Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  CAS  PubMed  Google Scholar 

  29. Tourasse NJ, Gouy M (1999) Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol Phylogenet Evol 13:159–168

    Article  CAS  PubMed  Google Scholar 

  30. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  32. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinforma Oxf Engl 21:456–463

    Article  CAS  Google Scholar 

  33. Nguyen L-T, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  34. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  35. Abadi S, Azouri D, Pupko T et al (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nat Commun 10:934

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dayhoff MO (1969) Atlas of protein sequence and structure. National Biomedical Research Foundation

    Google Scholar 

  37. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  38. Comte N, Morel B, Hasic D et al (2020) Treerecs: an integrated phylogenetic tool, from sequences to reconciliations. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa615

  39. Yates AD, Achuthan P, Akanni W et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the authors of all software bundled with Seaview (Clustal, muscle, gblocks, PhyML, PHYLIP, Treerecs) for permission to use these fine products. We thank Frédéric Lemoine and Olivier Gascuel for contributing code for the “Transfer bootstrap.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolo Gouy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gouy, M., Tannier, E., Comte, N., Parsons, D.P. (2021). Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. In: Katoh, K. (eds) Multiple Sequence Alignment. Methods in Molecular Biology, vol 2231. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1036-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1036-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1035-0

  • Online ISBN: 978-1-0716-1036-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics