Skip to main content

Annotation of Full-Length Long Noncoding RNAs with Capture Long-Read Sequencing (CLS)

  • Protocol
Functional Analysis of Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2254))

  • The original version of this chapter was revised: The affiliation for chapter author “Barbara Uszczynska-Ratajczak” has been updated. The correction to this chapter is available at https://doi.org/10.1007/978-1-0716-1158-6_22

Abstract

Metazoan genomes produce thousands of long-noncoding RNAs (lncRNAs), of which just a small fraction have been well characterized. Understanding their biological functions requires accurate annotations, or maps of the precise location and structure of genes and transcripts in the genome. Current lncRNA annotations are limited by compromises between quality and size, with many gene models being fragmentary or uncatalogued. To overcome this, the GENCODE consortium has developed RNA capture long-read sequencing (CLS), an approach combining targeted RNA capture with third-generation long-read sequencing. CLS provides accurate annotations at high-throughput rates. It eliminates the need for noisy transcriptome assembly from short reads, and requires minimal manual curation. The full-length transcript models produced are of quality comparable to present-day manually curated annotations. Here we describe a detailed CLS protocol, from probe design through long-read sequencing to creation of final annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. https://doi.org/10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. https://doi.org/10.1016/j.cell.2011.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lanzós A, Carlevaro-Fita J, Mularoni L et al (2017) Discovery of cancer driver long noncoding RNAs across 1112 tumour genomes: new candidates and distinguishing features. Sci Rep 7:1–16. https://doi.org/10.1038/srep41544

    Article  CAS  Google Scholar 

  4. Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173. https://doi.org/10.1093/nar/gku988

    Article  CAS  PubMed  Google Scholar 

  5. Mattick JS (2018) The state of long non-coding RNA biology. Noncod RNA 4:E17. https://doi.org/10.1007/978-3-319-13689-9_2

    Article  Google Scholar 

  6. Hezroni H, Koppstein D, Schwartz MG et al (2015) Principles of long noncoding rna evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11:1110–1122. https://doi.org/10.1016/j.celrep.2015.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uszczynska-Ratajczak B, Lagarde J, Frankish A et al (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19:535–548. https://doi.org/10.1038/s41576-018-0017-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanson KR, Hanna RE, Hegde M et al (2018) Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun 9:1–15. https://doi.org/10.1038/s41467-018-07901-8

    Article  CAS  Google Scholar 

  9. Fang S, Zhang L, Guo J et al (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 46:D308–D314. https://doi.org/10.1093/nar/gkx1107

    Article  CAS  PubMed  Google Scholar 

  10. Lagarde J, Uszczynska-Ratajczak B, Santoyo-Lopez J et al (2016) Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nat Commun 7:12339. https://doi.org/10.1038/ncomms12339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:1–7. https://doi.org/10.1093/nar/gkq224

    Article  CAS  Google Scholar 

  12. Steijger T, Abril JF, Engström PG et al (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184. https://doi.org/10.1038/nmeth.2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frankish A, Diekhans M, Ferreira A-M et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  14. Pruitt KD, Brown GR, Hiatt SM et al (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:756–763. https://doi.org/10.1093/nar/gkt1114

    Article  CAS  Google Scholar 

  15. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014. https://doi.org/10.1038/nbt.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tilgner H, Raha D, Habegger L et al (2013) Accurate identification and analysis of human mRNA isoforms using deep long read sequencing. G3 3:387–397. https://doi.org/10.1534/g3.112.004812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:1–11. https://doi.org/10.1186/s13059-016-1122-x

    Article  Google Scholar 

  18. Crider-Miller SJ, Reid LH, Higgins MJ, Nowak NJ, Shows TB, PAF and BEW (1997) Novel transcribed sequences within the BWS/WT2 region in 11p15.5: tissue-specific expression correlates with cancer type. Genomics 46:355–363. https://doi.org/10.1006/geno.1997.5061

    Article  CAS  PubMed  Google Scholar 

  19. Mercer TR, Gerhardt DJ, Dinger ME et al (2012) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104. https://doi.org/10.1038/nbt.2024

    Article  CAS  Google Scholar 

  20. Mercer TR, Clark MB, Crawford J et al (2014) Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protoc 9:989–1009. https://doi.org/10.1038/nprot.2014.058

    Article  CAS  PubMed  Google Scholar 

  21. Clark MB, Mercer TR, Bussotti G et al (2015) Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nat Methods 12:339–342. https://doi.org/10.1038/nmeth.3321

    Article  CAS  PubMed  Google Scholar 

  22. Bussotti G, Leonardi T, Clark MB et al (2016) Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Res 26:705–716. https://doi.org/10.1101/gr.199760.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hardwick SA, Chen WY, Wong T et al (2016) Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods 13:792–798. https://doi.org/10.1038/nmeth.3958

    Article  CAS  PubMed  Google Scholar 

  24. Lagarde J, Uszczynska-Ratajczak B, Carbonell S et al (2017) High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat Genet 49:1731–1740. https://doi.org/10.1038/ng.3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deveson IW, Brunck ME, Blackburn J et al (2018) Universal alternative splicing of noncoding exons. Cell Syst 6:245–255.e5. https://doi.org/10.1016/j.cels.2017.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sílvia Carbonell Sala and Barbara Uszczyńska-Ratajczak contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rory Johnson or Roderic Guigó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Carbonell Sala, S., Uszczyńska-Ratajczak, B., Lagarde, J., Johnson, R., Guigó, R. (2021). Annotation of Full-Length Long Noncoding RNAs with Capture Long-Read Sequencing (CLS). In: Cao, H. (eds) Functional Analysis of Long Non-Coding RNAs. Methods in Molecular Biology, vol 2254. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1158-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1158-6_9

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1157-9

  • Online ISBN: 978-1-0716-1158-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics