Skip to main content
Book cover

miRNomics pp 423–438Cite as

44 Current Challenges in miRNomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

Mature microRNAs (miRNAs) are short RNA sequences about 18–24 nucleotide long, which provide the recognition key within RISC for the posttranscriptional regulation of target RNAs. Considering the canonical pathway, mature miRNAs are produced via a multistep process. Their transcription (pri-miRNAs) and first processing step via the microprocessor complex (pre-miRNAs) occur in the nucleus. Then they are exported into the cytosol, processed again by Dicer (dsRNA) and finally a single strand (mature miRNA) is incorporated into RISC (miRISC). The sequence of the incorporated miRNA provides the function of RNA target recognition via hybridization. Following binding of the target, the mRNA is either degraded or translation is inhibited, which ultimately leads to less protein production. Conversely, it has been shown that binding within the 5′ UTR of the mRNA can lead to an increase in protein product. Regulation of homeostasis is very important for a cell; therefore, all steps in the miRNA-based regulation pathway, from transcription to the incorporation of the mature miRNA into RISC, are under tight control. While much research effort has been exerted in this area, the knowledgebase is not sufficient for accurately modelling miRNA regulation computationally. The computational prediction of miRNAs is, however, necessary because it is not feasible to investigate all possible pairs of a miRNA and its target, let alone miRNAs and their targets. We here point out open challenges important for computational modelling or for our general understanding of miRNA-based regulation and show how their investigation is beneficial. It is our hope that this collection of challenges will lead to their resolution in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ergin K, Çetinkaya R (2021) Regulation of microRNAs. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  2. Olcum M, Tufekci KU, Genc S (2021) MicroRNAs in genetic etiology of human diseases. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  3. Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y (2021) MicroRNAs and heat shock proteins in breast cancer biology. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  4. Karagur ER, Akgun S, Akca H (2021) Computational and bioinformatics methods for microRNA gene prediction. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  5. Nguyen LK, Dobrzyński M, Fey D, Kholodenko BN (2014) Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation. Front Physiol 5:4. https://doi.org/10.3389/fphys.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. https://doi.org/10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  7. Uzuner E, Ulu GT, Gürler SB, Baran Y (2021) The role of MiRNA in cancer: pathogenesis, diagnosis, and treatment. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  8. Hamid SM, Akgül B (2014) Master regulators of posttranscriptional gene expression are subject to regulation. Methods Mol Biol 1107:303–310

    Article  CAS  Google Scholar 

  9. Yaylak B, Akgül B (2021) Experimental microRNA detection methods. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  10. Erson-Bensan AE (2014) Introduction to MicroRNAs in biological systems. In: Yousef M, Allmer J (eds) miRNomics: MicroRNA biology and computational analysis, 1st edn. Humana Press, New York, pp 1–14

    Google Scholar 

  11. Mechtler P, Johnson S, Slabodkin H, Cohanim AB, Brodsky L, Kandel ES (2017) The evidence for a microRNA product of human DROSHA gene. RNA Biol 14:1508–1513. https://doi.org/10.1080/15476286.2017.1342934

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saçar Demirci MD, Yousef M, Allmer J (2019) Computational prediction of functional microRNA–mRNA interactions. Methods Mol Biol 1912:175–196

    Article  Google Scholar 

  13. Yan K, Liu P, Wu C-A, Yang G-D, Xu R, Guo Q-H, Huang J-G, Zheng C-C (2012) Stress-induced alternative splicing provides a mechanism for the regulation of MicroRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531. https://doi.org/10.1016/j.molcel.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Zhang H, Li L (2012) Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis: alternative splicing of microRNA binding sites. Plant J 70:421–431. https://doi.org/10.1111/j.1365-313X.2011.04882.x

    Article  CAS  PubMed  Google Scholar 

  15. Niu M, Tabari E, Ni P, Su Z (2018) Towards a map of cis-regulatory sequences in the human genome. Nucleic Acids Res 46:5395–5409. https://doi.org/10.1093/nar/gky338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dweep H, Showe LC, Kossenkov AV (2021) Functional annotation of microRNAs using existing resources. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  17. Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C, Diederichs S (2013) Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res 41:5503–5512. https://doi.org/10.1093/nar/gkt251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okamura K, Ladewig E, Zhou L, Lai EC (2013) Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 27:778–792. https://doi.org/10.1101/gad.211698.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghanbarian H, Yıldız MT, Tutar Y (2021) MicroRNA targeting. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  20. Nachtigall PG, Bovolenta LA (2021) Computational detection of microRNA targets. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  21. Akgül B, Erdoğan İ (2018) Intracytoplasmic re-localization of miRISC complexes. Front Genet 9:403. https://doi.org/10.3389/fgene.2018.00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cosacak M, Yiğit H, Kizil C, Akgül B (2018) Re-arrangements in the cytoplasmic distribution of small RNAs following the maternal-to-zygotic transition in drosophila embryos. Genes 9:82. https://doi.org/10.3390/genes9020082

    Article  CAS  PubMed Central  Google Scholar 

  23. Velandia-Huerto CA, Yazbeck AM, Schor J, Stadle PF (2021) Evolution and phylogeny of microRNAs—protocols, pitfalls, and problems. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  24. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301. https://doi.org/10.1093/bioinformatics/btp419

    Article  CAS  PubMed  Google Scholar 

  25. Shi W, Hendrix D, Levine M, Haley B (2009) A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol 16:183–189. https://doi.org/10.1038/nsmb.1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Schnitzler GR, Iyer LK, Aronovitz MJ, Baur WE, Karas RH (2016) MicroRNA-offset RNA alters gene expression and cell proliferation. PLoS One 11:e0156772. https://doi.org/10.1371/journal.pone.0156772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yousef M, Khalifa W, Acar E, Allmer J (2017) MicroRNA categorization using sequence motifs and k-mers. BMC Bioinformatics 18:170. https://doi.org/10.1186/s12859-017-1584-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Odenthal L, Allmer J, Yousef M (2021) Ensemble classifiers for multiclass microRNA classification. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  29. Dedeoğlu BG, Noyan S (2021) Experimental microRNA targeting validation. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  30. Demirci MDS (2021) Computational detection of pre-microRNAs. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  31. Yousef M, Parveen A, Kumar A (2021) Computational methods for predicting mature microRNAs. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  32. de Amorim TS, Pedro DLF, Paschoal AR (2021) MicroRNA databases and tools. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  33. Yousef M, Allmer J, Khalifa W (2016) Accurate plant MicroRNA prediction can be achieved using sequence motif features. J Intell Learn Syst Appl 08:9–22. https://doi.org/10.4236/jilsa.2016.81002

    Article  Google Scholar 

  34. Yousef M (2019) Hamming distance and K-mer features for classification of pre-cursor microRNAs from different species. In: Benavente-Peces C, Slama SB, Zafar B (eds) Proceedings of the 1st international conference on smart innovation, ergonomics and applied human factors (SEAHF). Springer International Publishing, Cham, pp 180–189

    Chapter  Google Scholar 

  35. Yousef M, Khalifa W, Acar İE, Allmer J (2017) Distinguishing between MicroRNA targets from diverse species using sequence motifs and K-mers. In: Proceedings of the 10th international joint conference on biomedical engineering systems and technologies. SCITEPRESS - Science and Technology Publications, Setúbal, pp 133–139

    Chapter  Google Scholar 

  36. Yousef M, Levy D, Allmer J (2018) Species categorization via MicroRNAs - based on 3’UTR target sites using sequence features: in: proceedings of the 11th international joint conference on biomedical engineering systems and technologies. SCITEPRESS - Science and Technology Publications, Funchal, Madeira, Portugal, pp 112–118

    Google Scholar 

  37. Tastan B, Tarakcioglu E, Birinci Y, Park Y, Genc S (2021) Role of exosomal microRNAs in cell-to-cell communication. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  38. Alkan AH, Akgül B (2021) Endogenous miRNA sponges. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  39. Zhang J, Hadj-Moussa H, Storey KB (2016) Current Progress of high-throughput MicroRNA differential expression analysis and random Forest gene selection for model and non-model systems: an R implementation. J Integr Bioinform 13:306–306

    Article  Google Scholar 

  40. Hadj-Moussa H, Hawkins LJ, Storey KB (2021) Role of microRNAs in extreme animal survival strategies. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  41. Hawkins LJ, Storey KB (2020) Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 240:110623. https://doi.org/10.1016/j.cbpa.2019.110623

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Allmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Akgül, B. et al. (2022). 44 Current Challenges in miRNomics. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics