Skip to main content

Transcript Identification Through Long-Read Sequencing

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2284))

Abstract

RNA-seq using long-read sequencing, such as nanopore and SMRT (Single Molecule, Real-Time) sequencing, enabled the identification of the full-length structure of RNA molecules. Several tools for long-read RNA-seq were developed recently. In this section, we introduce an analytical pipeline of long-read RNA-seq for isoform identification and the estimation of expression levels using minimap2, TranscriptClean, and TALON. We applied this pipeline to the public direct RNA-seq data of the HAP1 and HEK293 cell lines to identify transcript isoforms which can be detected only using long-read RNA-seq data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  2. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014. https://doi.org/10.1038/nbt.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oikonomopoulos S, Wang YC, Djambazian H et al (2016) Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci Rep 6:31602. https://doi.org/10.1038/srep31602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta I, Collier PG, Haase B et al (2018) Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat Biotechnol 36:1197–1202. https://doi.org/10.1038/nbt.4259

    Article  CAS  Google Scholar 

  5. Byrne A, Beaudin AE, Olsen HE et al (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027. https://doi.org/10.1038/ncomms16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RN A sequencing on an array of nanopores. Nat Methods 15:201–206. https://doi.org/10.1038/nmeth.4577

    Article  CAS  PubMed  Google Scholar 

  7. Workman RE, Tang AD, Tang PS, et al (2018) Nanopore native RNA sequencing of a human poly(A) transcriptome. bioRxiv 459529. https://doi.org/10.1101/459529

  8. Seki M, Katsumata E, Suzuki A et al (2019) Evaluation and application of RNA-Seq by MinION. DNA Res 26:55–65. https://doi.org/10.1093/dnares/dsy038

    Article  CAS  PubMed  Google Scholar 

  9. Calabrese C, Davidson NR, Demircioğlu D et al (2020) Genomic basis for RNA alterations in cancer. Nature 578:129–136. https://doi.org/10.1038/s41586-020-1970-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiraishi Y, Kataoka K, Chiba K et al (2018) A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res 28:1111–1125. https://doi.org/10.1101/gr.231951.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitelman F, Johansson B, Mertens F (2004) Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet 36:331–334

    Article  CAS  PubMed  Google Scholar 

  12. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu B, Liu Y, Li J et al (2019) deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. Genome Biol 20:274. https://doi.org/10.1186/s13059-019-1895-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marić J, Sović I, Križanović K, et al (2019) Graphmap2—splice-aware RNA-seq mapper for long reads. bioRxiv 720458. https://doi.org/10.1101/720458

  15. Frith MC, Kawaguchi R (2015) Split-alignment of genomes finds orthologies more accurately. Genome Biol 16:106. https://doi.org/10.1186/s13059-015-0670-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang AD, Soulette CM, van Baren MJ, et al (2018) Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. bioRxiv 410183. https://doi.org/10.1101/410183

  17. Wyman D, Balderrama-Gutierrez G, Reese F, et al (2019) A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification bioRxiv 672931. https://doi.org/10.1101/672931

  18. Kovaka S, Zimin AV, Pertea GM et al (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20:278. https://doi.org/10.1186/s13059-019-1910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oxford Nanopore Technologies Pinfish. https://github.com/nanoporetech/pinfish. Accessed 24 Feb 2020

  20. Soneson C, Yao Y, Bratus-Neuenschwander A et al (2019) A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat Commun 10:3359. https://doi.org/10.1038/s41467-019-11272-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun Z, Xue S, Xu H et al (2019) Effects of NSUN2 deficiency on the mRNA 5-methylcytosine modification and gene expression profile in HEK293 cells. Epigenomics 11:439–453. https://doi.org/10.2217/epi-2018-0169

    Article  CAS  PubMed  Google Scholar 

  22. Frankish A, Diekhans M, Ferreira A-M et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  23. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krueger F Trim Galore! http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 13 Mar 2020

  26. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  27. Andrews Simon FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 13 Mar 2020

  28. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 16H06279 (PAGS), 19K16108, and 19K16792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seki, M., Oka, M., Xu, L., Suzuki, A., Suzuki, Y. (2021). Transcript Identification Through Long-Read Sequencing. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1307-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1307-8_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1306-1

  • Online ISBN: 978-1-0716-1307-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics