Skip to main content

Use of Molecular Markers for Doubled Haploid Technology: From Academia to Plant Breeding Companies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2288))

Abstract

Molecular markers are employed for doubled haploid (DH) technology by researchers and applied plant breeders in many crops. In the 1990s, isozymes and RFLPs were commonly used marker technologies to characterize DHs and were later replaced by PCR- based markers (e.g., RAPDs, AFLPs, ISSRs, SSRs) and today by SNPs. Markers are used for multiple purposes in DH production, that is, for the study of genes underlying haploid induction and confirming homozygous plants of gametophytic origin. Furthermore, they are tools for investigating segregation in DH populations and for mapping simple and complex traits using DHs. The deployment of DHs and markers for developing trait-linked markers are demonstrated with examples from rapeseed, wheat, and barley. Marker development for resistance to viruses derived from genetic resources and their use in, for example, pyramiding of resistance genes, are given as an example for the combination of DH-technology and marker development in research. Today, marker systems amenable to automation are frequently used in applied plant breeding. Practical examples are given from Lantmännen (LM) (https://Lantmannen.com) using large-scale genotyping for variety development based on SSRs and SNPs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tadesse W, Sanchez-Garcia M, Tawkaz S, Baum M (2019) Doubled haploid production in wheat. In: Ordon F, Friedt W (eds) Advances in breeding techniques for cereal crops. Burleigh Dodds, Cambridge, pp 93–115

    Chapter  Google Scholar 

  2. Wittkop B, Cselenyi L, Friedt W, Bernhard T (2019) Doubled haploid (DH) production for barley. In: Ordon F, Friedt W (eds) Advances in breeding techniques for cereal crops. Burleigh Dodds, Cambridge, pp 117–141

    Chapter  Google Scholar 

  3. Molenaar WS, Melchinger AE (2019) Production of doubled haploid lines for hybrid breeding in maize. In: Ordon F, Friedt W (eds) Advances in breeding techniques for cereal crops. Burleigh Dodds, Cambridge, pp 143–171

    Google Scholar 

  4. Werner K, Friedt W, Ordon F (2007) Localisation and combination of resistance genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids and molecular markers. Euphytica 158:323–329

    Article  CAS  Google Scholar 

  5. Perovic D, Kopahnke D, Habekuß A, Ordon F, Serfling A (2019) Marker-based harnessing of genetic diversity to improve resistance of barley to fungal and viral diseases. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in cereals. Woodhead Publishing Series in Food Science, Technology and Nutrition, Cambridge, pp 137–164

    Chapter  Google Scholar 

  6. Varshney RK, Tuberosa R (eds) (2007) Genomics-assisted crop improvement, vol 1: genomics approaches and platforms. Springer, Dordrecht

    Google Scholar 

  7. Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Google Scholar 

  8. Tanksley SD, Orton TJ (1983) Isozymes in plant genetics and breeding, part A. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  9. Delourme R, Eber F (1992) Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet 92:222–228

    Article  Google Scholar 

  10. Koebner RMD, Martin PM (1990) Association of eyespot resistance in wheat cv. ‘Capelle-Desprez’ with endopeptidase profile. Plant Breed 104:312–317

    Article  CAS  Google Scholar 

  11. Tuvesson S, Öhlund R, v Post L, Forster BP, Dayteg C (1998) Use of genetic markers at Svalöf Weibull AB. J Swed Seed Assoc 3:167–175

    Google Scholar 

  12. Konishi T, Ban T, Iida Y, Yoshimi R (1997) Genetic analysis of disease resistance to all strains of BaYMV in a Chinese barley landrace, Mokusekko 3. Theor Appl Genet 94:871–877

    Article  Google Scholar 

  13. Le Gouis J, Erdogan M, Friedt W, Ordon F (1995) Potential and limitations of isozymes for chromosomal localization of resistance genes against barley mild mosaic virus (BaMMV). Euphytica 82:25–30

    Article  Google Scholar 

  14. Helentjaris TG, King G, Slocum M, Sidenstrang C, Wegman S (1985) Restriction fragment length polymorphism as probes for plant diversity and their developments as tools for plant breeding. Plant Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  15. Dion Y, Gugel RK, Rakow GFW, Séguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91:1190–1194

    Article  CAS  PubMed  Google Scholar 

  16. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Hermann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  CAS  PubMed  Google Scholar 

  17. Pellio B, Streng S, Bauer E, Stein N, Perovic D, Schiemann A, Friedt W, Ordon F, Graner A (2005) High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 110:283–293

    Article  CAS  PubMed  Google Scholar 

  18. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waugh R, Powell W (1992) Using RAPD markers for crop improvement. Trends Biotechnol V 10:186–191

    Article  CAS  Google Scholar 

  21. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  CAS  PubMed  Google Scholar 

  23. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  24. Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht, pp 1–24

    Google Scholar 

  25. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal M (2002) Construction of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    Google Scholar 

  26. Morgante M, Pfeiffer A, Jurman I, Paglia G, Olivieri AM (1998) PCR Analysis of SSR polymorphisms in plants using agarose gels. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Springer, Dordrecht, pp 206–207

    Chapter  Google Scholar 

  27. Ramsay L, Macaulay M, degli Ivanissivich S, McLean K, Cardle L, Fuller J, Edwards K, Tuvesson S, Morgante M, Massari A, Maesti E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    Google Scholar 

  28. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite concensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  29. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics V 20(2):176–183

    Article  CAS  Google Scholar 

  30. Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  31. Dayteg C, Rasmussen M, Tuvesson S, Merker A, Jahoor A (2008) Development of an ISSR-derived PCR marker linked to nematode-resistance (Ha2) in spring barley. Plant Breed 127:24–27

    Article  CAS  Google Scholar 

  32. Rafalski JA (2002) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  33. Bhattramakki D, Rafalski A (2003) Discovery and application of single nucleotide polymorphism markers in plants. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CABI Publishing, Wallingford, pp p179–p192

    Google Scholar 

  34. Olesen A, Andersen SB, Due IK (1988) Anther culture response in perennial ryegrass (Lolium perenne L.). Plant Breed 101:60–65

    Article  Google Scholar 

  35. Andersen SB, Christiansen J, Farestveit B (1990) Carrot (Daucus carota L.): in vitro production of haploids and field trials. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12. Springer, Berlin, pp 393–402

    Google Scholar 

  36. Kiszczak W, Krzyżanowska D, Strycharczuk K, Kowalska U, Wolko B, Górecka K (2011) Determination of ploidy and homozygosity of carrot plants obtained from anther cultures. Acta Physiol Plant 33(2):401–407

    Article  Google Scholar 

  37. Kiełkowska A, Adamus A, Baranski R (2014) An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cell Dev Biol Plant 50(3):376–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tuvesson S, Dayteg C, Hagberg P, Manninen O, Tanhuanpää P, Tenhola-Roininen T, Kiviharju K, Weyen J, Förster J, Schondelmaier J, Lafferty L, Marn M, Fleck A (2007) Molecular markers and doubled haploids in European plant breeding. Euphytica 158(3):278–294

    Article  CAS  Google Scholar 

  39. Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK (2008) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tissue Organ Cult 92:293–302

    Article  CAS  Google Scholar 

  40. Perera PIP, Perera L, Hocher V, Verdeil J-L, Yakandawala DMD, Weerakoon LK (2008) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703

    Article  CAS  PubMed  Google Scholar 

  41. Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387

    Article  CAS  Google Scholar 

  42. Tuvesson IKD, Pedersen S, Olesen A, Andersen SB (1991) An effect of the 1BL/1RS chromosome on albino frequency in wheat (Triticum aestivum L.) anther culture. J Genet Breed 45:345–348

    Google Scholar 

  43. Hayward MD, Olesen A, Due IK, Jenkins R, Morris P (1990) Segregation of isozyme marker loci amongst androgenetic plants of Lolium perenne L. Plant Breed 104:68–71

    Article  Google Scholar 

  44. Åhman I, Bengtsson T (2019) Introgression of resistance to Rhopalosiphum padi L. from wild barley into cultivated barley facilitated by doubled haploid and molecular marker techniques. Theor Appl Genet 132:1397–1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sayed H, Kayyal H, Ramsey L, Ceccarelli S, Baum M (2002) Segregation distortion in doubled haploid lines of barley (Hordeum vulgare L.) detected by simple sequence repeat (SSR) markers. Euphytica 125:265–272

    Article  CAS  Google Scholar 

  46. Barchi L, Lanteri S, Portis E, Stàgel A, Valè G, Toppino L, Rotinoc GL (2010) Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 53(10):805–815

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Bai G, Chao S, Wang Z (2015) A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat. BioMed Res Int 830618:1–10

    Google Scholar 

  48. Tuvesson S, Ljungberg A, Johansson N, Karlsson K-E, Suijs LW, Josset J-P (2000) Large-scale production of wheat and triticale double haploids through a single anther culture method. Plant Breed 119:455–459

    Article  Google Scholar 

  49. Torp AM, Andersen SB (2009) Albinism in microspore culture. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, New York, NY, pp 155–160

    Chapter  Google Scholar 

  50. Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP (2009) Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomics 9(3):311–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bélanger S, Marchand S, Jacques P-E, Meyers B, Belzile F (2018) Differential expression profiling of microspores during the early stages of isolated microspore culture using the responsive barley cultivar Gobernadora. G3 Genes Genomes Genet 8(5):1603–1614

    Google Scholar 

  52. Zhou WJ, Tang GX, Hagberg P (2002) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192

    Article  CAS  Google Scholar 

  53. Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Phytopathology 98(2):215–221

    Article  CAS  PubMed  Google Scholar 

  54. Bertholdsson NO, Tuvesson S (2005) Possibilities to use marker assisted selection to improve allelopathic activity in cereals. In: Proceedings of the COST SUSVAR/ECO-PB workshop on ‘organic plant breeding strategies and the use of molecular markers”, 17–19 Jan 2005, Driebergen, pp 67–71

    Google Scholar 

  55. Ordon F, Friedt W (1993) Mode of inheritance and genetic diversity of BaMMV-resistance of exotic barley germplasms carrying genes different from ‘ym4’. Theor Appl Genet 86:229–233

    Article  CAS  PubMed  Google Scholar 

  56. Palloix A, Ordon F (2011) Advanced breeding for virus resistance in plants. In: Caranta C, Miguel A, Aranda MA, Tepfer M, López-Moya JJ (eds) Recent advances in plant virology. CaisterAcademic Press, Norfolk, pp 195–218

    Google Scholar 

  57. Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083

    Article  CAS  Google Scholar 

  58. Juergens M, Paetsch C, Krämer I, Zahn M, Rabenstein R, Schondelmaier J, Schliephake E, Snowdon R, Friedt W, Ordon F (2010) Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV) – rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theor Appl Genet 120:735–744

    Article  CAS  PubMed  Google Scholar 

  59. Michelmore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 15:393–427

    Article  Google Scholar 

  60. Ordon F, Bauer E, Friedt W, Graner A (1995) Marker-based selection for the ym4 BaMMV-resistance gene in barley using RAPDs. Agronomie 15:481–485

    Article  Google Scholar 

  61. Graner A, Bauer E (1993) RFLP mapping of the ym4 virus resistance gene in barley. Theor Appl Genet 86:689–693

    Article  CAS  PubMed  Google Scholar 

  62. Weyen J, Bauer E, Graner A, Friedt W, Ordon F (1996) RAPD-mapping of the distal portion of chromosome 3 of barley including the BaMMV/BaYMV resistance gene ym4. Plant Breed 115:285–287

    Article  CAS  Google Scholar 

  63. Graner A, Streng S, Kellermann A, Proeseler G, Schiemann A, Peterka H, Ordon F (1999) Molecular mapping of genes conferring resistance to soil-borne viruses in barley – an approach to promote understanding of host-pathogen interactions. J Plant Dis Protect 106:405–410

    CAS  Google Scholar 

  64. Graner A, Bauer E, Kellermann A, Proeseler G, Wenzel G, Ordon F (1995) RFLP analysis of resistance to the barley yellow mosaic virus complex. Agronomie 15:475–479

    Article  Google Scholar 

  65. Ping Y, Perovic D, Habekuß A, Zhou R, Graner A, Ordon F, Stein N (2013) Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol Breed 32:27–37

    Article  CAS  Google Scholar 

  66. Nissan-Azzous F, Graner A, Friedt W, Ordon F (2005) Fine-mapping of the BaMMV, BaYMV-1 and BaYMV-2 resistance of barley (Hordeum vulgare) accession PI1963. Theor Appl Genet 110:212–218

    Article  CAS  Google Scholar 

  67. Werner K, Rönnicke S, Le Gouis J, Friedt W, Ordon F (2003) Mapping of a new BaMMV-resistance gene derived from the variety ‘Taihoku A’. J Plant Dis Protect 110:304–311

    CAS  Google Scholar 

  68. Humbroich K, Jaiser H, Schiemann A, Devaux P, Jacobi A, Cselenyi L, Habekuß A, Friedt W, Ordon F (2010) Mapping of resistance against BaMMV-Teik – an rym5 resistance breaking strain of BaMMV – in the Taiwanese barley cultivar ‘Taihoku A’. Plant Breed 129:346–348

    Article  CAS  Google Scholar 

  69. Le Gouis J, Devaux P, Werner K, Hariri D, Bahrman N, Beghin D, Ordon F (2004) rym15 from the Japanese cultivar ‘Chikurin Ibaraki 1’ is a new Barley Mild Mosaic Virus (BaMMV) resistance gene mapped on chromosome 6H. Theor Appl Genet 108:1521–1525

    Article  PubMed  CAS  Google Scholar 

  70. Kai H, Takata K, Tsukazaki M, Furusho M, Baba T (2012) Molecular mapping of Rym17, a dominant and rym18 a recessive Barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124:577–583

    Article  CAS  PubMed  Google Scholar 

  71. Werner K, Friedt W, Laubach W, Waugh R, Ordon F (2003) Dissection of resistance to soil-borne yellow mosaic inducing viruses of barley (BaMMV, BaYMV, BaYMV-2) in a complex breeder’s cross by SSRs and simultaneous mapping of BaYMV/BaYMV-2 resistance of ‘Chikurin Ibaraki 1’. Theor Appl Genet 106:1425–1432

    Article  CAS  PubMed  Google Scholar 

  72. Perovic D, Krämer I, Habekuß A, Perner K, Pickering R, Proeseler G, Kanyuka K, Ordon F (2014) Genetic analyses of BaMMV/BaYMV resistance in barley accession HOR4224 result in the identification of an allele of the translation initiation factor 4e (Hv-eIF4E) exclusively effective against barley mild mosaic virus (BaMMV). Theor Appl Genet 127:1061–1071

    Article  CAS  PubMed  Google Scholar 

  73. Perovic D, Förster J, Devaux P, Hariri D, Guilleroux M, Kanyuka K, Lyons R, Weyen J, Feuerhelm D, Kastirr U, Sourdille P, Röder M, Ordon F (2009) Mapping and diagnostic marker development for soil-borne cereal mosaic virus resistance in bread wheat. Mol Breed 23:641–653

    Article  CAS  Google Scholar 

  74. Ordon F, Schiemann A, Pellio B, Dauck V, Bauer E, Streng S, Friedt W, Graner A (1999) Application of molecular markers in breeding for resistance to the barley yellow mosaic virus complex. J Plant Dis Protect 106:256–264

    CAS  Google Scholar 

  75. Habekuß A, Kühne T, Krämer I, Rabenstein F, Ehrig F, Ruge-Wehling B, Huth W, Ordon F (2008) Identification of a rym5 resistance breaking BaMMV-isolate in Germany. J Phytopathol 156:36–41

    Google Scholar 

  76. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Article  CAS  Google Scholar 

  77. Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76

    Article  CAS  PubMed  Google Scholar 

  78. Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Burridge A, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics 13:219

    Article  PubMed  PubMed Central  Google Scholar 

  79. Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2007) The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to Septoria tritici blotch (Mycosphaerella graminicola). Euphytica 154:249–254

    Article  CAS  Google Scholar 

  80. Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92:439–445

    Article  PubMed  Google Scholar 

  81. Thomas J, Fineberg N, Penner G, McCartney C, Auny T, Wise I, McCallum B (2005) Chromosome location and markers of Sm1: a gene of wheat that conditions antibiotic resistance to orange wheat blossom midge. Mol Breed 15:183–192

    Article  CAS  Google Scholar 

  82. Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  CAS  PubMed  Google Scholar 

  83. Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  CAS  PubMed  Google Scholar 

  84. Liu S, Andersson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43:760–766

    Article  CAS  Google Scholar 

  85. Andersson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:112–119

    Article  Google Scholar 

  86. Odilbekov F, He X, Armoniené R, Saripella GV, Henriksson T, Singh PK, Chawade A (2019) QTL mapping and transcriptome analysis to identify differentially expressed genes induced by Septoria tritici blotch disease of wheat. Agronomy 9:510. https://doi.org/10.3390/agronomy9090510

    Article  CAS  Google Scholar 

  87. Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67(14):4169–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dayteg C, Tuvesson S, Merker A, Jahoor A, Kolodinska Brantestam A (2007) Automation of DNA-marker analysis for molecular breeding in crops: practical experience of a plant breeding company. Plant Breed 126(4):410–415

    Article  Google Scholar 

  89. Dayteg C (2008) Automation of molecular markers in practical breeding of spring barley (Hordeum vulgare L.). Swedish University of Agricultural Sciences, Uppsala. ISSN: 1652-6880. ISBN: 978-91-85913-31-2

    Google Scholar 

  90. Tuvesson S, v Post L, Öhlund R, Hagberg P, Graner A, Svitashev S, Schehr M, Elovsson R (1998) Molecular breeding for the BaMMV/BaYMV resistance gene ym4 in winter barley. Plant Breed 117:19–22

    Article  CAS  Google Scholar 

  91. Dayteg C, von Post L, Öhlund R, Tuvesson S (1998) Quick DNA extraction method for practical plant breeding programmes. Plant and Animal Genome VI, San Diego, CA, p 39

    Google Scholar 

  92. v Post R, v Post L, Dayteg C, Nilsson M, Forster BP, Tuvesson S (2003) A high-throughput DNA extraction method for barley seed. Euphytica 130(2):255–260

    Article  Google Scholar 

  93. Korzun V (2003) Molecular markers and their applications in cereals breeding. In Marker assisted selection: A fast track to increase genetic gain in plant and animal breeding?. Session I: MAS in plants. Proceedings of an international workshop organised by the Fondazione per le Biotecnologie, the University of Turin and FAO. Turin, Italy, pp 18–22

    Google Scholar 

  94. Svitashev S, v Post L, Öhlund R, Dayteg C, Hagberg P, Jönsson R, Löhde J, Elovsson R, Tuvesson S (1998) DNA mapping of the Yd2 gene in a winter barley DH population ‘Vixen’ x ‘Igri’. Plant and Animal. Genome VII, San Diego, CA, p 402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine Due Tuvesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tuvesson, S.D., Larsson, CT., Ordon, F. (2021). Use of Molecular Markers for Doubled Haploid Technology: From Academia to Plant Breeding Companies. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2288. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1335-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1335-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1334-4

  • Online ISBN: 978-1-0716-1335-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics